Skip to main content
Log in

Spatial and vertical distribution of 137Cs activity concentrations in lake sediments of Turawa Lake (Poland)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main objective of this research was to study the spatial and vertical distribution of 137Cs activity concentrations in the bottom sediments of Turawa Lake 32 years after the Chernobyl fallout to investigate possible factors responsible for the post-fallout migration and accumulation of 137Cs in the selected reservoir. The results demonstrated a strong relationship between the increasing 137Cs and 40K activity concentrations and the decreasing grain size of sediments. Significant amounts of 137Cs were detected in the bottom sediments deposited in the deeper parts of the reservoir (especially near the dam). Therefore, this research showed that Turawa Lake can be an important trap for sediments polluted with 137Cs. Moreover, disturbed vertical distribution of 137Cs activity concentrations in the sediment columns collected from the littoral zone of this lake was observed, which is probably related to the bottom erosion intensified by wind-wave action, bioturbations, and water-level fluctuations. In the profundal zone, the vertical distribution of 137Cs activity concentrations was undisturbed, which indicates stable sedimentation conditions in this part of Turawa Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used in the presented study are available from the corresponding author on a reasonable request.

References

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Anselmetti FS, Bühler R, Finger D, Girardclos S, Lancini A, Rellstab C, Sturm M (2007) Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquat Sci 69:179–198

    Article  Google Scholar 

  • Appleby PG (2005) Chronostratigraphic techniques in recent sediments. In: Tracking Environmental Change Using Lake Sediments. Kluwer Academic Publishers, pp 171–203

  • Bábek O, Kielar O, Lenďáková Z et al (2020) Reservoir deltas and their role in pollutant distribution in valley-type dam reservoirs: Les Království Dam, Elbe River, Czech Republic. Catena 184:104251. https://doi.org/10.1016/j.catena.2019.104251

    Article  CAS  Google Scholar 

  • Basuki T, Miyashita S, Tsujimoto M, Nakashima S (2018) Deposition density of 134Cs and 137Cs and particle size distribution of soil and sediment profile in Hibara Lake area, Fukushima: an investigation of 134Cs and 137Cs indirect deposition into lake from surrounding area. J Radioanal Nucl Chem 316:1039–1046

    Article  CAS  Google Scholar 

  • Carlsson S (1978) A model for the movement and loss of 137Cs in a small watershed. Health Phys 34:33–37

    Article  CAS  Google Scholar 

  • Cheel RJ (2005) Grain texture. In: Cheel RJ (ed) Introduction to clastic sedimentology. Brock University Middleton, Ontario, pp 8–46

    Google Scholar 

  • Comans RNJ, Middelburg JJ, Zonderhuis J, Woittiez JRW, De Lange GJ, Lange GJ, Das HA, Van der Weijden CH (1989) Mobilization of radiocaesium in pore water of lake sediments. Nature 339:367–369

    Article  CAS  Google Scholar 

  • Contreras S, Werne JP, Araneda A et al (2018) Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes. Sci Total Environ 630:878–888. https://doi.org/10.1016/J.SCITOTENV.2018.02.225

    Article  CAS  Google Scholar 

  • Diemer J, Allan G, Eckardt I, Kroening D, Vinson D (2011) Sedimentation in a Piedmont reservoir: evidence from Brown’s Cove, Lake Wylie, North Carolina. Environ Eng Geosci 17(2):123–142

    Article  Google Scholar 

  • Dorr H, Munnich KO (1989) Downward movement of soil organic matter and its influence on trace-element transport (210Pb, 137Cs) in the soil. Radiocarbon 31:655–663. https://doi.org/10.1017/S003382220001225X

    Article  Google Scholar 

  • Dost RJJ, Mannaerts CMM (2005) Generation of lake bathymetry using SONAR, satellite imagery and GIS. In: ESRI 2008: Proceedings of the 2008 ESRI International User Conference Enschede, The Netherlands

  • Edgington DN, Val Klump J, Robbins JA, Kusner YS, Pampura VD, Sandimirov IV (1991) Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from 137Cs and 210Pb in sediment cores. Nature 350:601–604

    Article  CAS  Google Scholar 

  • Erlinger C, Lettner H, Hubmer A et al (2008) Determining the Chernobyl impact on sediments of a pre-Alpine lake with a very comprehensive set of data. J Environ Radioact 99:1294–1301. https://doi.org/10.1016/J.JENVRAD.2008.03.012

    Article  CAS  Google Scholar 

  • Evans DW, Alberts JJ, Clark RA (1983) Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim Cosmochim Acta 47:1041–1049

    Article  CAS  Google Scholar 

  • Eyrolle-Boyer F, Boyer P, Garcia-Sanchez L et al (2016) Behaviour of radiocaesium in coastal rivers of the Fukushima Prefecture (Japan) during conditions of low flow and low turbidity – Insight on the possible role of small particles and detrital organic compounds. J Environ Radioact 151(Pt 1):328–340. https://doi.org/10.1016/J.JENVRAD.2015.10.028

    Article  CAS  Google Scholar 

  • Fujii M, Ono K, Yoshimura C, Miyamoto M (2018) The role of autochthonous organic matter in radioactive cesium accumulation to riverine fine sediments. Water Res 137:18–27. https://doi.org/10.1016/J.WATRES.2018.02.063

    Article  CAS  Google Scholar 

  • Funaki H, Yoshimura K, Sakuma K, Iri S, Oda Y (2019) Evaluation of particulate 137Cs discharge from a mountainous forested catchment using reservoir sediments and sinking particles. J Environ Radioact 210:105814

    Article  CAS  Google Scholar 

  • Gąsiorowski M (2008) Deposition rate of lake sediments under different alternative stable states. Geochronometria 32:29–35

    Article  Google Scholar 

  • Gąsiorowski M, Hercman H (2005) Recent changes of sedimentation rate in three Vistula oxbow lakes determined by 210Pb dating. Geochronometria 24:33–39

    Google Scholar 

  • Golosov VN, Ivanov MM, Tsyplenkov AS et al (2021) Erosion as a factor of transformation of soil radioactive contamination in the basin of the Shchekino Reservoir (Tula Region). Eurasian Soil Sci 54:291–303. https://doi.org/10.1134/S106422932102006X

    Article  CAS  Google Scholar 

  • Gurwin J (2010) Groundwater hazard regarding environmental impact assessment of renaturalisation of the Turawa reservoir (in Polish). Biul Państw Inst Geol 440:65–76

    Google Scholar 

  • Gurwin J, Kryza H, Kryza J, Poprawski L (2005) Groundwater recognizing in the region of Turawa Lake for needs of ecological state assessment (in Polish). Współczesne Probl Hydrogeol 12:241–253

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30(2):117–137

    Article  CAS  Google Scholar 

  • Hilton J, Lishman JP, Allen PV (1986) The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol Oceanogr 31(1):125–133

    Article  Google Scholar 

  • Huon S, Hayashi S, Laceby JP, Tsuji H, Onda Y, Evrard O (2018) Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident. Sci Total Environ 612:1079–1090

    Article  CAS  Google Scholar 

  • Ilus E, Saxen R (2005) Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. J Environ Radioact 82:199–221

    Article  CAS  Google Scholar 

  • Ivanov MM et al (2021) Using reservoir sediment deposits to determine the longer-term fate of chernobyl-derived 137Cs fallout in the fluvial system. Environ Pollut 274:116588

    Article  CAS  Google Scholar 

  • Jagielak J, Biernacka M, Henschke J, Sosińska A (1998) Radiological Atlas of Poland (in Polish). Biblioteka Monitoringu Środowiska PIOŚ, Warsaw

  • Kaminski S, Richter T, Walser M, Lindner G (1994) Redissolution of cesium radionuclides from sediments of freshwater lakes due to biological degradation of organic matter. Radiochim Acta 66(67):433–436

    Article  Google Scholar 

  • Kansanen PH, Jaakkola T, Kulmala S, Suutarinen R (1991) Sedimentation and distribution of gamma emitting radionuclides in bottom sediments of southern Lake Piijanne, Finland, after the Chernobyl accident. Hydrobiologia 222:121–140

    Article  CAS  Google Scholar 

  • Kapała J, Karpińska M, Mnich Z, Szpak A, Milewski R, Citko D (2008) The changes in the contents of 137Cs in bottom sediments of some Masurian lakes during 10–15 y observation (Poland). Radiat Prot Dosimetry 130(2):178–185

    Article  Google Scholar 

  • Klaminder J, Appleby P, Crook P, Renberg I (2012) Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating. Sedimentology 59(7):2259–2267

    Article  CAS  Google Scholar 

  • Koarashi J, Nishimura S, Nakanishi T et al (2016) Post-deposition early-phase migration and retention behavior of radiocesium in a litter–mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident. Chemosphere 165:335–341. https://doi.org/10.1016/J.CHEMOSPHERE.2016.09.043

    Article  CAS  Google Scholar 

  • Konoplev et al (2018) Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and lateral migration. J Environ Radioact 186:23–33

    Article  CAS  Google Scholar 

  • Laceby JP, Huon S, Onda Y et al (2016) Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture? https://doi.org/10.1016/j.jenvman.2016.09.020

  • Lan J, Wang T, Chawchai S, Cheng P, Zhou K, Yu K, Yan D, Wang Y, Zang J, Liu Y, Tan L, Ai L, Xu H (2020) Time marker of 137Cs fallout maximum in lake sediments of Northwest China. Quatern Sci Rev 241:106413

    Article  Google Scholar 

  • Latala A, Wierzba S (2007) Biodegradation of bottom sediments of Turawa Lake. Pol J Chem Technol 9(2):73–77

    Article  CAS  Google Scholar 

  • Machowski R, Ruman M, Rzętała MA, Rzętała M (2008) Morphology of the bottom and the littoral zone of Turawa reservoir (in Polish). Kształtowanie środowiska geograficznego i ochrona przyrody na obszarach uprzemysłowionych i zurbanizowanych 39:45–55

    Google Scholar 

  • Madruga MJ, Silva L, Gomes AR et al (2014) The influence of particle size on radionuclide activity concentrations in Tejo River sediments. J Environ Radioact 132:65–72. https://doi.org/10.1016/J.JENVRAD.2014.01.019

    Article  CAS  Google Scholar 

  • Majerová L, Bábek O, Navrátil T et al (2018) Dam reservoirs as an efficient trap for historical pollution: the passage of Hg and Pb through the Ohře River, Czech Republic. Environ Earth Sci 77. https://doi.org/10.1007/s12665-018-7761-3

  • Mclean RI, Summers JK, Mclean RL (1990) Evaluation of transport and storage of 6°Co, 134Cs, 137Cs and 65Zn by river sediments in the lower Susquehanna River. Environ Pollut 63:137–153

    Article  CAS  Google Scholar 

  • Meyers PA, Ishiwatari R (1995) Organic matter accumulation records in lake sediments. In: Lerman A, Imboden DM, Gat JR (eds) Physics and Chemistry of Lakes. Springer, Berlin, pp 279–328

    Chapter  Google Scholar 

  • Mietelski JW, Dubchak S, Błażej S, Anielska T, Turnau K (2010) 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. J Environ Radioact 101(9):706–711

    Article  CAS  Google Scholar 

  • Mishra S, Sahoo SK, Bossew P et al (2016) Vertical migration of radio-caesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in undisturbed soils of grassland and forest. J Geochem Explor 169:163–186. https://doi.org/10.1016/J.GEXPLO.2016.07.023

    Article  CAS  Google Scholar 

  • Muñoz-Salinas E, Castillo M, Romero F, Correa-Metrio A (2021) Understanding sedimentation at the El Molinito reservoir (NW Mexico) before and after dam construction using physical sediment analyses. J S Am Earth Sci 111:103401

    Article  Google Scholar 

  • Natkaniec J (1999) Accumulation of anthropogenic radioactive elements in soils near Nysa and Opole and sediments of Turawa reservoir (in Polish). Zesz Nauk AR Krak Inż Środ 19(355):57–70

    Google Scholar 

  • Naulier M, Eyrolle-Boyer F, Boyer P et al (2017) Particulate organic matter in rivers of Fukushima: an unexpected carrier phase for radiocesiums. Sci Total Environ 579:1560–1571. https://doi.org/10.1016/J.SCITOTENV.2016.11.165

    Article  CAS  Google Scholar 

  • Park CW, Kim SM, Kim I et al (2021) Sorption behavior of cesium on silt and clay soil fractions. J Environ Radioact 233:106592. https://doi.org/10.1016/J.JENVRAD.2021.106592

    Article  CAS  Google Scholar 

  • Pulley S, Foster IDL, Collins AL, Zhang Y, Evans J (2018) An analysis of potential controls on long-term 137Cs accumulation in the sediments of UK lakes. J Paleolimnol 60:1–30

    Article  Google Scholar 

  • Putyrskaya V, Klemt E, Röllin S, Corcho-Alvarado JA, Sahli H (2020) Dating of recent sediments from Lago Maggiore and Lago di Lugano (Switzerland/Italy) using 137Cs and 210Pb. J Environ Radioact 212:106135

    Article  CAS  Google Scholar 

  • Ries T, Putyrskaya V, Klemt E (2019) Long-term distribution and migration of 137Cs in a small lake ecosystem with organic-rich catchment: a case study of Lake Vorsee (Southern Germany). J Environ Radioact 198:89–103

    Article  CAS  Google Scholar 

  • Rigol A, Vidal M, Rauret G (2002) An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake. J Environ Radioact 58:191–216. https://doi.org/10.1016/S0265-931X(01)00066-2

    Article  CAS  Google Scholar 

  • Sakuma K, Malins A, Funaki H, Kurikami H, Niizato T, Nakanishi T, Mori K, Tada K, Kobayashi T, Kitamura A, Hosomi M (2018) Evaluation of sediment and 137Cs redistribution in the Oginosawa River catchment near the Fukushima Dai-ichi Nuclear Power Plant using integrated watershed modeling. J Environ Radioact 182:44–51

    Article  CAS  Google Scholar 

  • Santschi PH, Bollhalder S, Zingg S, Lueck A, Farrenkothen K (1990) The self-cleaning capacity of surface waters after radioactive fallout evidence from European waters after Chernobyl, 1986–1988. Environ Sci Technol 24(4):519–527

    Article  CAS  Google Scholar 

  • Santschi PH, Nyffeler UP, Anderson RF, Schiff SL, O’Hara P, Hesslein RH (1986) Response of radioactive trace metals to acid-base titrations in controlled experimental ecosystems: evaluation of transport parameters for application to whole-lake radiotracer experiments. Can J Fish Aquat Sci 43:60–77

    Article  CAS  Google Scholar 

  • Sedláček J, Bábek O, Kielar O (2016) Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic. Geomorphology 254:73–87

    Article  Google Scholar 

  • Smith JT, Beresford NA (2005) Chernobyl – catastrophe and consequences. Springer

    Google Scholar 

  • Somboon S, Kavasi N, Sahoo SK et al (2018) Radiocesium and 40K distribution of river sediments and floodplain deposits in the Fukushima exclusion zone. J Environ Radioact 195:40–53. https://doi.org/10.1016/j.jenvrad.2018.09.003

    Article  CAS  Google Scholar 

  • Strzelecki R, Wołkowicz S, Szewczyk J, Lewandowski P (1993) Map of cesium concentration in Poland, radiological map of Poland (I) (in Polish). Polish Geological Institute, Warsaw

  • Szarłowicz K, Reczyński W, Gołaś J, Kościelniak P, Skiba M, Kubica B (2011) Sorption of 137Cs and 210Pb on sediment samples from a drinking water reservoir. Pol J Environ Stud 20(5):1305–1312

    Google Scholar 

  • Tachi Y, Sato T, Takeda C et al (2020) Key factors controlling radiocesium sorption and fixation in river sediments around the Fukushima Daiichi Nuclear Power Plant. Part 2: Sorption and fixation behaviors and their relationship to sediment properties. Sci Total Environ 724:138097. https://doi.org/10.1016/J.SCITOTENV.2020.138097

    Article  CAS  Google Scholar 

  • Teisseyre AK (1983) Bottoms of Turawa Lake in the light of geological research (in Polish). Geol Sudet 18(1):21–60

    Google Scholar 

  • Tsabaris C, Eleftheriou G, Kapsimalis V et al (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl Radiat Isot 65:445–453. https://doi.org/10.1016/J.APRADISO.2006.11.006

    Article  CAS  Google Scholar 

  • Tsuji H, Tanaka A, Komatsu K, Kohzu A, Matsuzaki SS, Hayashi S (2019) Vertical/spatial movement and accumulation of 137Cs in a shallow lake in the initial phase after the Fukushima Daiichi nuclear power plant accident. Appl Radiat Isot 147:59–69

    Article  Google Scholar 

  • Wakiyama Y, Onda Y, Yoshimura K et al (2019) Land use types control solid wash-off rate and entrainment coefficient of Fukushima-derived 137Cs, and their time dependence. J Environ Radioact 210:105990. https://doi.org/10.1016/J.JENVRAD.2019.105990

    Article  CAS  Google Scholar 

  • Wang Q, Sha Z, Wang J, Zhong Q, Fang P, Ma Y, Du J (2020) Vertical distribution of radionuclides in Lake Qinghai, Qinghai-Tibet Plateau, and its environmental implications. Chemosphere 259(8):127489

    Article  CAS  Google Scholar 

  • Wojewoda J (2013) The sand spit in Turawa Lake - sedimentological study (in Polish). Conference abstract, POKOS 5’2013, 90–92

  • Wołkowicz S, Strzelecki R (2002) Geochemistry of post-Chernobyl cesium in soils and plants in Opole region (in Polish). Przegl Geol 50(10):941–944

    Google Scholar 

  • Wróbel Ł, Dołhańczuk-Śródka A, Kłos A, Ziembik Z (2015) The activity concentration of post-Chernobyl 137Cs in the area of the Opole Anomaly (southern Poland). Environ Monit Assess 187(1):4084

    Article  Google Scholar 

  • Yoshimura K, Onda Y, Fukushima T (2014) Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident. Sci Rep 4(4514):1–6

    Google Scholar 

  • Zapata F, Nguyen ML (2010) Soil erosion and sedimentation studies using environmental radionuclides. Radioact Environ 16:295–322

    Article  CAS  Google Scholar 

  • Ziembik Z, Dołhańczuk-Śródka A, Komosa A, Orzeł J, Wacławek M (2010) Assessment of 137Cs and 239, 240Pu distribution in forest soils of the Opole anomaly. Water Air Soil Pollut 206(1):307–320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Elwira Sienkiewicz, Wojciech Sienkiewicz, and Anna Mulczyk from the Institute of Geological Sciences of the Polish Academy of Sciences for their help during field and laboratory work. We would like also to thank Šárka Matoušková from the Institute of Geology of the Czech Academy of Sciences for her help during field work. We also thank the reviewers for their useful comments and helpful suggestions.

Funding

This work was supported by the internal project ‘Turawa’ by the Institute of Geological Sciences of the Polish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

IS contributed to the study conception, sample collection, material preparation, analyses, writing the manuscript, and revision. MG was responsible for the conceptualization, sample collection, supervising the analyses, and manuscript editing.

Corresponding author

Correspondence to Ilona Sekudewicz.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Georg Steinhauser

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekudewicz, I., Gąsiorowski, M. Spatial and vertical distribution of 137Cs activity concentrations in lake sediments of Turawa Lake (Poland). Environ Sci Pollut Res 29, 80882–80896 (2022). https://doi.org/10.1007/s11356-022-21417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21417-1

Keywords

Navigation