Skip to main content
Log in

Perfluoroalkyl acids in aqueous samples from Germany and Kenya

  • Recent Advances in Chemistry and the Environment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 29 September 2016

Abstract

Continuous monitoring of chemicals in the environment is important to control their fate and to protect human health, flora, and fauna. Perfluoroalkyl acids (PFAAs) have been detected frequently in different environmental compartments during the last 15 years and have drawn much attention because of their environmental persistence, omnipresence, and bioaccumulation potential. Water is an important source of their transport. In the present study, distributions of PFAAs in river water, wastewater treatment plant (WWTP) effluent, and tap water from eastern part of Germany and western part of Kenya were investigated. Eleven perfluorocarboxylic acids (PFCAs) and five perfluorosulfonic acids (PFSAs) were analyzed using liquid chromatography/tandem mass spectrometry. Sum of mean concentrations of eight PFAAs detected in drinking tap water from Leipzig was 11.5 ng L–1, dominated by perfluorooctanoic acid (PFOA, 6.2 ng L–1). Sums of mean riverine concentrations of PFAAs detected in Pleiße/White Elster, Saale, and Elbe (Germany) were 24.8, 54.3, and 26.8 ng L–1, respectively. Annual flux of PFAAs from River Saale was estimated to be 164 ± 23 kg a–1. The effluent of WWTP in Halle was found to contain four times higher levels of PFAAs than river water and was dominated by perfluorobutane sulfonate (PFBS) with 32 times higher concentration than the riverine level. It advocates that WWTPs are the point source of contaminating water bodies with PFAAs, and short-chain PFAAs are substituting long-chain homologues. Sums of mean riverine concentrations of PFAAs in Sosiani (Kenya) in samples from sparsely populated and densely populated areas were 58.8 and 109.4 ng L–1, respectively, indicating that population directly affected the emissions of PFAAs to surface waters. The discussion includes thorough review and comparison of recently published literature reporting occurrence of PFAAs in aqueous matrices.

Perfluoroalkyl acids in aqueous matrices

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahrens L (2011) Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit 13:20–31. doi:10.1039/C0EM00373E

    Article  CAS  Google Scholar 

  • Ahrens L, Felizeter S, Sturm R et al (2009a) Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany. Mar Pollut Bull 58:1326–1333. doi:10.1016/j.marpolbul.2009.04.028

    Article  CAS  Google Scholar 

  • Ahrens L, Plassmann M, Xie Z, Ebinghaus R (2009b) Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe and North Sea, Germany. Front Environ Sci Eng China 3:152–170. doi:10.1007/s11783-009-0021-8

    Article  CAS  Google Scholar 

  • AllAfrica.com (2013) Kenya: heavy pollution in Eldoret choking up River Sosiani. In: AllAfrica.com. http://allafrica.com/stories/201307150072.html. Accessed 9 Jan 2016

  • Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541. doi:10.1002/ieam.258

    Article  CAS  Google Scholar 

  • CEPA (2016) Perfluorooctane sulfonate and its salts and certain other compounds regulations. Gatineau, Canada

    Google Scholar 

  • Chen X, Zhu L, Pan X et al (2015) Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China. Water Res 80:235–44. doi:10.1016/j.watres.2015.04.032

    Article  CAS  Google Scholar 

  • Chirikona F, Filipovic M, Ooko S, Orata F (2015) Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya. Environ Monit Assess 187:4425. doi:10.1007/s10661-015-4425-6

    Article  Google Scholar 

  • Cousins IT (2013) Nordic research on per- and polyfluoroalkyl substances (PFASs). Environ Sci Pollut Res 20:7926–7929. doi:10.1007/s11356-013-2000-7

    Article  Google Scholar 

  • DIN 38407-42 (2011) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung - Teil 42: Bestimmung ausgewählter polyfluorierter Verbindungen (PFC) in Wasser. F42:1–43.

  • EU Directive (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC And 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Brussels, Belgium

  • Dufková V, Čabala R, Ševčík V (2012) Determination of C5–C12 perfluoroalkyl carboxylic acids in river water samples in the Czech Republic by GC–MS after SPE preconcentration. Chemosphere 87:463–469. doi:10.1016/j.chemosphere.2011.12.029

    Article  Google Scholar 

  • Duong HT, Kadokami K, Shirasaka H et al (2015) Occurrence of perfluoroalkyl acids in environmental waters in Vietnam. Chemosphere 122:115–124. doi:10.1016/j.chemosphere.2014.11.023

    Article  CAS  Google Scholar 

  • DWI (2009) Guidance on the water supply (water quality) regulations 2000 specific to PFOS (perfluorooctane sulphonate) and PFOA (perfluorooctanoic acid) concentrations in drinking water. London, England

  • Eriksson U, Kärrman A, Rotander A et al (2013) Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands. Environ Sci Pollut Res 20:7940–7948. doi:10.1007/s11356-013-1700-3

    Article  CAS  Google Scholar 

  • Filipovic M, Berger U (2015) Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? Chemosphere 129:74–80. doi:10.1016/j.chemosphere.2014.07.082

    Article  CAS  Google Scholar 

  • Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342. doi:10.1021/es001834k

    Article  CAS  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35:766–770. doi:10.1021/es001489z

    Article  CAS  Google Scholar 

  • Herzke D, Huber S, Bervoets L et al (2013) Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environ Sci Pollut Res 20:7930–7939. doi:10.1007/s11356-013-1777-8

    Article  CAS  Google Scholar 

  • Heydebreck F, Tang J, Xie Z, Ebinghaus R (2015) Alternative and legacy perfluoroalkyl substances: differences between European and Chinese river/estuary systems. Environ Sci Technol 49:8386–8395. doi:10.1021/acs.est.5b01648

    Article  CAS  Google Scholar 

  • Keränen J, Ahkola H, Knuutinen J et al (2013) Formation of PFOA from 8:2 FTOH in closed-bottle experiments with brackish water. Environ Sci Pollut Res 20:8001–12. doi:10.1007/s11356-013-1975-4

    Article  Google Scholar 

  • Kissa E (2001) Fluorinated surfactants and repellents. Second. Marcel Dekker, Inc., New York

    Google Scholar 

  • Kjeldsen LS, Bonefeld-Jørgensen EC (2013) Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut Res 20:8031–8044. doi:10.1007/s11356-013-1753-3

    Article  CAS  Google Scholar 

  • Lam N-H, Cho C-R, Lee J-S et al (2014) Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey. Sci Total Environ 491–492:154–162. doi:10.1016/j.scitotenv.2014.01.045

    Article  Google Scholar 

  • Lau C (2012) Perfluorinated compounds. Springer Basel, Basel

    Book  Google Scholar 

  • LHW (2015) Hydrologischer Monatsbericht Februar 2015. Magdeburg, Sachsen-Anhalt

    Google Scholar 

  • Lindim C, Cousins IT, VanGils J (2015) Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model. Environ Pollut 207:97–106. doi:10.1016/j.envpol.2015.08.050

    Article  CAS  Google Scholar 

  • Liu J, Mejia Avendaño S (2013) Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ Int 61:98–114. doi:10.1016/j.envint.2013.08.022

    Article  CAS  Google Scholar 

  • Löfstedt Gilljam J, Leonel J, Cousins IT, Benskin JP (2015) Is ongoing sulfluramid use in South America: a significant source of perfluorooctanesulfonate (PFOS)? Production inventories, environmental fate, and local occurrence. Environ Sci Technol acs.est.5b04544. doi: 10.1021/acs.est.5b04544

  • Long M, Ghisari M, Bonefeld-Jørgensen EC (2013) Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor. Environ Sci Pollut Res Int 20:8045–56. doi:10.1007/s11356-013-1628-7

    Article  CAS  Google Scholar 

  • Lorenzo M, Campo J, Farré M et al (2016) Perfluoroalkyl substances in the Ebro and Guadalquivir river basins (Spain). Sci Total Environ 540:191–199. doi:10.1016/j.scitotenv.2015.07.045

    Article  CAS  Google Scholar 

  • Mak YL, Taniyasu S, Yeung LWY, et al (2009) Perfluorinated compounds in rap water from China and several other countries. Environ Sci Technol 43:4824–4829. doi:10.1021/es900637a

  • Meng J, Wang T, Wang P, et al (2014) Perfluoroalkyl substances in daling river adjacent to fluorine industrial parks: Implication from industrial emission. Bull Environ Contam Toxicol 94:34–40. doi:10.1007/s00128-014-1419-y

  • Miralles-Marco A, Harrad S (2015) Perfluorooctane sulfonate: a review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution. Environ Int 77:148–159. doi:10.1016/j.envint.2015.02.002

    Article  CAS  Google Scholar 

  • Möller A, Ahrens L, Surm R et al (2010) Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environ Pollut 158:3243–3250. doi:10.1016/j.envpol.2010.07.019

    Article  Google Scholar 

  • Niisoe T, Senevirathna STMLD, Harada KH et al (2015) Perfluorinated carboxylic acids discharged from the Yodo River Basin, Japan. Chemosphere 138:81–88. doi:10.1016/j.chemosphere.2015.05.060

    Article  CAS  Google Scholar 

  • Nordén M, Berger U, Engwall M (2013) High levels of perfluoroalkyl acids in eggs and embryo livers of great cormorant (Phalacrocorax carbo sinensis) and herring gull (Larus argentatus) from Lake Vänern, Sweden. Environ Sci Pollut Res 20:8021–8030. doi:10.1007/s11356-013-1567-3

    Article  Google Scholar 

  • Ode A, Rylander L, Lindh CH et al (2013) Determinants of maternal and fetal exposure and temporal trends of perfluorinated compounds. Environ Sci Pollut Res 20:7970–8. doi:10.1007/s11356-013-1573-5

    Article  CAS  Google Scholar 

  • Oliaei F, Kriens D, Weber R, Watson A (2013) PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environ Sci Pollut Res 20:1977–1992. doi:10.1007/s11356-012-1275-4

    Article  CAS  Google Scholar 

  • Olsen GW, Burris JM, Ehresman DJ et al (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115:1298–1305. doi:10.1289/ehp.10009

    Article  CAS  Google Scholar 

  • Orata F, Quinete N, Werres F, Wilken R-D (2009) Determination of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf water. Bull Environ Contam Toxicol 82:218–222. doi:10.1007/s00128-008-9543-1

    Article  CAS  Google Scholar 

  • Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43:386–392. doi:10.1021/es802216n

    Article  CAS  Google Scholar 

  • Perkola N, Sainio P (2013) Survey of perfluorinated alkyl acids in Finnish effluents, storm water, landfill leachate and sludge. Environ Sci Pollut Res 20:7979–7987. doi:10.1007/s11356-013-1518-z

    Article  CAS  Google Scholar 

  • Post GB, Cohn PD, Cooper KR (2012) Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116:93–117. doi:10.1016/j.envres.2012.03.007

    Article  CAS  Google Scholar 

  • Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44. doi:10.1021/es0512475

    Article  CAS  Google Scholar 

  • Rahman MF, Peldszus S, Anderson WB (2014) Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res 50:318–340. doi:10.1016/j.watres.2013.10.045

    Article  CAS  Google Scholar 

  • Rayne S, Forest K, Friesen KJ (2009) Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:936–54

    Article  CAS  Google Scholar 

  • Schwanz TG, Llorca M, Farré M, Barceló D (2016) Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain. Sci Total Environ 539:143–152. doi:10.1016/j.scitotenv.2015.08.034

    Article  CAS  Google Scholar 

  • Sharma BM, Bharat GK, Tayal S et al (2016) Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: emissions and implications for human exposure. Environ Pollut 208:704–713. doi:10.1016/j.envpol.2015.10.050

    Article  CAS  Google Scholar 

  • Shi Y, Vestergren R, Xu L, et al (2015) Characterizing direct emissions of perfluoroalkyl substances from ongoing fluoropolymer production sources: A spatial trend study of Xiaoqing River, China. Environ Pollut 206:104–112. doi:10.1016/j.envpol.2015.06.035

  • Shoeib T, Hassan Y, Rauert C, Harner T (2016) Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: trends in developed and developing countries. Chemosphere 144:1573–1581. doi:10.1016/j.chemosphere.2015.08.066

    Article  CAS  Google Scholar 

  • Shoemaker J, Grimmett P, Boutin B (2009) Determination of selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). EPA Doc. EPA/600/R-08/092. US EPA Off. Res. Dev. EPA 537:1–50.

  • Thompson J, Eaglesham G, Mueller J (2011) Concentrations of PFOS, PFOA and other perfluorinated alkyl acids in Australian drinking water. Chemosphere 83:1320–1325. doi:10.1016/j.chemosphere.2011.04.017

    Article  CAS  Google Scholar 

  • UNEP (2009) Stockholm Convention on persistent organic pollutants. PFOS in Annex B. Stockholm, Sweden

  • USEPA (2000) EPA and 3M announce phase out of PFOS. In: Environ. Prot. Agency. http://yosemite.epa.gov/opa/admpress.nsf/0/33AA946E6CB11F35852568E1005246B4. Accessed 16 May 2000

  • USEPA (2006) 2010/2015 PFOA stewardship program. In: Environ. Prot. Agency. http://www.epa.gov/assessing-and-managing-chemicals-under-tsca/20102015-pfoa-stewardship-program. Accessed 14 Oct 2015

  • Usepa SNUR (2015) Significant new uses regulations: long-chain perfluoroalkyl carboxylate and perfluoroalkyl sulfonate chemical substances. United States, Washington DC

    Google Scholar 

  • Valsecchi S, Rusconi M, Mazzoni M et al (2015) Occurrence and sources of perfluoroalkyl acids in Italian river basins. Chemosphere 129:126–134. doi:10.1016/j.chemosphere.2014.07.044

    Article  CAS  Google Scholar 

  • van der Veen I, Weiss J, van Hattum B (2014) 6th interlaboratory study (ILS) on perfluoroalkyl substances (PFASs) in environmental samples 2013. IVM Institute for Environmental Studies, VU University Amsterdam, Amsterdam

  • Vestergren R, Orata F, Berger U, Cousins IT (2013) Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environ Sci Pollut Res 20:7959–7969. doi:10.1007/s11356-013-1722-x

    Article  CAS  Google Scholar 

  • Weiss J, Boer J De, Berger U, et al (2015) PFAS analysis in water for the global monitoring plan of the Stockholm Convention: set-up and guidelines for monitoring. United Nations Environment Programme (UNEP) Division of Technology, Industry and Economics, Geneva

  • Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14:1847–1850. doi:10.1158/1055-9965.EPI-05-0456

    Article  CAS  Google Scholar 

  • Wilhelm M, Wittsiepe J, Völkel W et al (2015) Perfluoroalkyl acids in children and their mothers: association with drinking water and time trends of inner exposures—results of the Duisburg birth cohort and Bochum cohort studies. Int J Hyg Environ Health 218:645–655. doi:10.1016/j.ijheh.2015.07.001

    Article  CAS  Google Scholar 

  • Xie S, Wang T, Liu S et al (2013) Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environ Int 52:1–8. doi:10.1016/j.envint.2012.11.004

    Article  CAS  Google Scholar 

  • Ye F, Tokumura M, Islam MS et al (2014) Spatial distribution and importance of potential perfluoroalkyl acid precursors in urban rivers and sewage treatment plant effluent—case study of Tama River, Japan. Water Res 67C:77–85. doi:10.1016/j.watres.2014.09.014

    Article  Google Scholar 

  • Zhao Z, Xie Z, Tang J et al (2014) Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. Chemosphere 129:118–125. doi:10.1016/j.chemosphere.2014.03.050

    Article  Google Scholar 

  • Zhu Z, Wang T, Meng J et al (2015) Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: seasonal variation, mass flow, and risk assessment. Environ Sci Pollut Res 22:10009–10018. doi:10.1007/s11356-015-4189-0

    Article  CAS  Google Scholar 

  • Zushi Y, Hogarh JN, Masunaga S (2012) Progress and perspective of perfluorinated compound risk assessment and management in various countries and institutes. Clean Technol Environ Policy 14:9–20. doi:10.1007/s10098-011-0375-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support for a doctoral research scholarship from Higher Education Commission (HEC), Pakistan and German Academic Exchange Service (DAAD), Germany. The authors are grateful to Mr. Uwe Schröter for technical help, Mr. Stefan Kunz for help in the lab, and Mrs. Bilha Saina Chepchirchir to provide samples from Kenya. Moreover, the authors are thankful to participants of 15th EuCheMS International Conference on Chemistry and the Environment (Leipzig, Germany) for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umer Shafique.

Additional information

Responsible editor: Roland Kallenborn

An erratum to this article is available at http://dx.doi.org/10.1007/s11356-016-7721-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The online version of this article contains supplementary material, which is available to authorized users. (PDF 978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafique, U., Schulze, S., Slawik, C. et al. Perfluoroalkyl acids in aqueous samples from Germany and Kenya. Environ Sci Pollut Res 24, 11031–11043 (2017). https://doi.org/10.1007/s11356-016-7076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7076-4

Keywords

Navigation