Skip to main content
Log in

Plant responses to a phytomanaged urban technosol contaminated by trace elements and polycyclic aromatic hydrocarbons

  • ECOTOX, the INRA's network of ecotoxicologists
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Medicago sativa was cultivated at a former harbor facility near Bordeaux (France) to phytomanage a soil contaminated by trace elements (TE) and polycyclic aromatic hydrocarbons (PAH). In parallel, a biotest with Phaseolus vulgaris was carried out on potted soils from 18 sub-sites to assess their phytotoxicity. Total soil TE and PAH concentrations, TE concentrations in the soil pore water, the foliar ionome of M. sativa (at the end of the first growth season) and of Populus nigra growing in situ, the root and shoot biomass and the foliar ionome of P. vulgaris were determined. Despite high total soil TE, soluble TE concentrations were generally low, mainly due to alkaline soil pH (7.8–8.6). Shoot dry weight (DW) yield and foliar ionome of P. vulgaris did not reflect the soil contamination, but its root DW yield decreased at highest soil TE and/or PAH concentrations. Foliar ionomes of M. sativa and P. nigra growing in situ were generally similar to the ones at uncontaminated sites. M. sativa contributed to bioavailable TE stripping by shoot removal (in g ha−1 harvest−1): As 0.9, Cd 0.3, Cr 0.4, Cu 16.1, Ni 2.6, Pb 4, and Zn 134. After 1 year, 72 plant species were identified in the plant community across three subsets: (I) plant community developed on bare soil sowed with M. sativa; (II) plant community developed in unharvested plots dominated by grasses; and (III) plant community developed on unsowed bare soil. The shoot DW yield (in mg ha−1 harvest−1) varied from 1.1 (subset I) to 6.9 (subset II). For subset III, the specific richness was the lowest in plots with the highest phytotoxicity for P. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BTEX:

Benzene toluene ethylbenzene xylene

CEC:

Cationic exchange capacity

DGT:

Diffusive gradients in thin-film

DOM:

Dissolved organic matter

DW:

Dry weight

EC:

Electrical conductivity

EXAFS:

Extended x-ray absorption fine structure

FCA:

Factorial correspondence analysis

GRO:

Gentle remediation option

ISO:

International organization for standardization

Mg:

Megagram

MPC:

Maximum permitted concentration in green forages in France

OM:

Organic matter

PAH:

Polycyclic aromatic hydrocarbons

PCA:

Principal component analysis

PCB:

Polychlorinated biphenyls

SPW:

Soil pore water

TE:

Trace element

THC:

Total hydrocarbons

UCT:

Upper critical threshold concentration in feedstuff

USEPA:

United State Environmental Protection Agency

WHC:

Water holding capacity

XANES:

X-ray Absorption near edge structure

References

  • Adriaensen K, Bert V, Böhm K, Brignon JM, Cochet N, Cundy A, Denys S, Friesl-Hanl W, Gombert D, Haag R, Hurst S, Jaunatre R., Jollivet P, Kumpiene J, Magnie M-C, Marschner B, Mench M, Mikhalovsky S, Müller I, Onwubuya K, Puschenreiter M, Raspail F, Renella G, Rouïl L, Ruttens A, Schoefs O, Soularue J.P, Stolz R, Tack K, Teasdale P, Tlustoš P, Vangronsveld J, Vialletelle F, Waite S (2009) Sustainable management of trace element contaminated soils — development of a decision tool system and its evaluation for practical application. Final research report. Project no. SN-01/20; 2008. [http://www.snowman-era.net/downloads/SUMATECS_ FINAL_REPORT.pdf]

  • Adriano DC (2001) Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer Verlag, New-York, 871 p

    Book  Google Scholar 

  • AFNOR (2003) Qualité du sol - Échantillonnage - Partie 2 : lignes directrices pour les techniques d'échantillonnage. In NF 10381–2. AFNOR, Available at (http://www.boutique.afnor.org/norme/nf-iso-10381-2/qualite-du-sol-echantillonnage-partie-2-lignes-directrices-pour-les-techniques-d-echantillonnage/article/731258/fa041880) (Verified on February, 2nd, 2015)

  • AFNOR (2005) Qualité du sol—Détermination du pH. In: NF 10390. AFNOR, Available at (http://www.boutique.afnor.org/norme/nf-iso-10390/qualite-du-sol-determination-du-ph/article/702762/fa117123) (Verified on February, 2nd, 2015)

  • AFNOR (2009) Qualité de l'eau - Dosage d'éléments choisis par spectroscopie d'émission optique avec plasma induit par haute fréquence (ICP-OES). In NF 11885. AFNOR, Available at (http://www.boutique.afnor.org/norme/nf-en-iso-11885/qualite-de-l-eau-dosage-d-elements-choisis-par-spectroscopie-d-emission-optique-avec-plasma-induit-par-haute-frequence-icp-oe/article/621242/fa133335) (Verified on February, 2nd, 2015)

  • Arrêté du 29 août (2014) modifiant l’arrêté du 12 janvier 2001 fixant les teneurs maximales pour les substances et produits indésirables dans l’alimentation des animaux. Fr Off J211: 15013. http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000029440197&categorieLien=id (verified on March 20th, 2015)

  • Arrêté du 28 octobre (2010) relatif aux installations de stockage de déchets inertes. Fr Off J 265: 20388. http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000023082021&dateTexte=&categorieLien=id (verified on March 20th, 2015)

  • Auger R, Laporte-Cru J (2003) Flore du Domaine Atlantique du Sud-Ouest de La France et des Régions de Plaines. Canopé - CRDP de Bordeaux, Bordeaux, 532 p

    Google Scholar 

  • Baize D (2000) Teneurs totales en “métaux lourds” dans les sols français. Résultats généraux du programme ASPITET. Le Courrier de l’Environnement de l’INRA 39:39–54

    Google Scholar 

  • Baize D, Deslais W, Saby N (2007) Teneurs en huit éléments traces (Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn) dans les sols agricoles en France - Résultats d'une collecte de données à l'échelon national. ADEME - Gis Sol - INRA. 86 p http://www.gissol.fr/programme/bdetm/_rapport_anademe/rapport/contents.php

  • Baker AJM (1981) Accumulators and excluders ‐ strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • BASIAS (2015) Inventaire historique de sites industriels et activités de service. http://basias.brgm.fr/ (verified on March 20th, 2015)

  • BASOL (2015) Base de données Basol sur les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif http://basol.environnement.gouv.fr/ (verified on March 20th, 2015)

  • Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190

    Article  CAS  Google Scholar 

  • Beesley L, Dickinson N (2011) Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol Biochem 43:188–196

    Article  CAS  Google Scholar 

  • Bes CM, Mench M, Aulen M, Gaste H, Taberly J (2010) Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330:267–280

    Article  CAS  Google Scholar 

  • Blum WEH, Horak O, Mentler A, Puschenreiter M (2012) UNESCO – EOLSS Environmental and Ecological Chemistry – Vol.II – Trace Elements. Available at (http://www.eolss.net/Sample-Chapters/C06/E6-13-03-04.pdf) (verified on March 20th, 2015)

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham M, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, Springer-Verlag, Wien and New York, USA, 865 pp

    Book  Google Scholar 

  • Callaway RM (2007) Positive Interactions and Interdependence in Plant Communities. Springer, Dordrecht, the Netherlands

    Google Scholar 

  • Chaney RL (1989) Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yose B, Barrow NJ, Goldshmid J (eds) Inorganic Contaminants in the Vadose Zone. Springer Verlag, Berlin, pp 140–158

    Chapter  Google Scholar 

  • Cocozza C, Vitullo D, Lima G, Maiuro L, Marchetti M, Tognetti R (2014) Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia. Environ Sci Pollut Res 21:1796–1808

    Article  CAS  Google Scholar 

  • Cundy A, Witter N, Mench M, Friesl W, Müller I, Neu S (2013) Developing principles of sustainability and stakeholder engagement for "gentle" remediation approaches: the European context. J Environ Manag 129:283–291

    Article  CAS  Google Scholar 

  • Davison W, Zhang H (2012) Progress in understanding the use of diffusive gradients in thin films (DGT)—back to basics. Environ Chem 9:1–13

    Article  CAS  Google Scholar 

  • DEFRA (2012). Environmental Protection Act 1990: Part 2A, Contaminated Land Statutory Guidance April 2012. PB13735 DEFRA, London, UK. https://www.gov.uk/government/publications/contaminated-land-statutory-guidance (accessed March 2015)

  • Deram A, Denayer FO, Petit D, Van Haluwyn C (2006) Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils. Environ Pollut 140:62–70

    Article  CAS  Google Scholar 

  • Deycard VN, Schafer J, Blanc G, Coynel A, Petit JCJ, Lanceleur L, Dutruch L, Bossy C, Ventura A (2014) Contributions and potential impacts of seven priority substances (As, Cd, Cu, Cr, Ni, Pb, and Zn) to a major European estuary (Gironde Estuary, France) from urban wastewater. Mar Chem 167:123–134

    Article  CAS  Google Scholar 

  • Evangelou MWH, Robinson BH, Conesa HM, Schulin R (2012) Biomass production on trace element (TE) contaminated land—a review. Environ Eng Sci 29:823–839

    Article  CAS  Google Scholar 

  • Gómez-Sagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbisu C (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut 223:3249–3262

    Article  Google Scholar 

  • Grafe M, Donner E, Collins RN, Lombi E (2014) Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review. Analyt Chim Acta 822:1–22

    Article  CAS  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Hammon R, Mc Laughlin M, Lombi E (2007) Natural attenuation of trace element availability in soils. SETAC Press, Boca Raton, p 256

    Google Scholar 

  • He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:163–174

    Article  CAS  Google Scholar 

  • HOMBRE’s (2014) Role in Brownfields Management and Avoidance Urban Land Management 2065 http://www.zerobrownfields.eu/quicklinks/HOMBRE_Broschure_2014_FINAL.pdf(verified on March 20th, 2015)

  • Kabala C, Karczewska A, Medynska-Juraszek A (2014) Variability and relationships between Pb, Cu, and Zn concentrations in soil solutions and forest floor leachates at heavily polluted sites. J Plant Nutr Soil Sci 177:573–584

    Article  CAS  Google Scholar 

  • Kalman J, Bonnail-Miguel E, Smith BD, Bury NR, Rainbow PS (2015) Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field. Sci Total Environ 506–507:109–117

    Article  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48

    Article  CAS  Google Scholar 

  • Kidd P, Mench M, Alvarez-López V, Bert V, Dimitriou I, Friesl-Hanl W, Herzig R, Janssen JO, Kolbas A, Müller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytoremediation. doi:10.1080/15226514.2014.1003788

    Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  Google Scholar 

  • Komárek M, Tlustos P, Száková J, Chrastný V (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151:27–38

    Article  Google Scholar 

  • Krumins JA, Goodey NM, Gallagher F (2015) Plant soil interactions in metal contaminated soils. Soil Biol Geochem 80:224–231

    Article  CAS  Google Scholar 

  • Kumpiene J, Bert V, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka F, Herzig R, Janssen JO, Kidd P, Mench M, Müller L, Neu S, Oustriere N, Puschenreiter M, Renella G, Roumier PH, Siebielec G, Vangronsveld J, Manier N (2014) Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by Gentle Remediation Options (GRO). Sci Total Environ 496:510–522

    Article  CAS  Google Scholar 

  • Lettens S, Vandecasteele B, De Vos B, Vansteenkiste D, Verschelde P (2011) Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Sci Total Environ 409:2306–2316

    Article  CAS  Google Scholar 

  • Li JT, Baker AJM, Ye ZH, Wang HB, Shu WS (2012) Phytoextraction of Cd-contaminated soils: Current status and future challenges. Crit Rev Environ Sci Technol 42:2113–2152

    Article  CAS  Google Scholar 

  • MacNicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129

    Article  CAS  Google Scholar 

  • Marchand L, Mench M, Marchand C, Le Coustumer P, Kolbas A, Maalouf JP (2011) Phytotoxicity testing of lysimeter leachates from aided phytostabilized Cu-contaminated soils using duckweed (Lemna minor L.). Sci Total Environ 411:146–153

    Article  Google Scholar 

  • Marchand L, Mench M (2014) Parc des Angéliques - Quai de Brazza – Débouché Pont Chaban-Delmas –Bordeaux : Diagnostic de contamination, rapport final. Convention INRA n° 22000694 UMR Biogeco INRA 1202, Talence, France

    Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4. Article 6389.

  • Mench M, Manceau A, Vangronsveld J, Clijsters H, Mocquot B (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-borne Zn. Agronomie 20:383–397

    Article  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguebel JP, Gawronski SW, Schroeder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Mench M, Kolbas A, Marchand L, Hego E, Oustrière N, Rousseau F, Roumier PH, Nibaudeau M, Boechat C, Sinchuk A, Nsanganwimana F, Guinberteau J, Monmarson M (2012) 18th month progress report, Gentle remediation of trace element contaminated land – GREENLAND. Project FP7-KBBE-266124, UMR BIOGECO INRA 1202, Talence, France, p 33

    Google Scholar 

  • Mertens J, Vervaeke P, De Schrijver A, Luyssaert S (2004) Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 326:209–215

    Article  CAS  Google Scholar 

  • Michalet R, Brooker RW, Cavieres LA et al (2006) Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett 9:767–773

    Article  Google Scholar 

  • Moreno-Jiménez E, Beesley L, Lepp NW, Dickinson NM, Hartley W, Clemente R (2011) Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Environ Pollut 159:3078–3085

    Article  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37

    Google Scholar 

  • Novoa D, Palma S, Hernan-Gaete O (2010) Effect of arbuscular mycorrhizal fungi Glomus spp. inoculation on alfalfa growth in soils with copper. Chil J Agric Res 70:259–265

    Article  Google Scholar 

  • Paková V, Hilscherová K, Feldmannová M, Bláha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environ Toxicol Chem 25:3238–3245

    Article  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montana L (2013) Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J Environ Public Health, Article ID 158764, 11 pages. doi: 10.1155/2013/158764

  • Peña-Fernández A, González-Muñoz MJ, Lobo-Bedmar MC (2014) Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ Int 72:176–185

    Article  Google Scholar 

  • Petit JCJ, Schäfer J, Coynel A, Blanc G, Deycard VN, Derrienick H, Lanceleur L, Dutruch L, Bossy C, Mattielli N (2013) Anthropogenic sources and biogeochemical reactivity of particulate and dissolved Cu isotopes in the turbidity gradient of the Garonne River (France). Chem Geol 359:125–135

    Article  CAS  Google Scholar 

  • PNSE 3 (2014) Plan National Santé Environnement (PNSE 3) 2015–2019. http://www.sante.gouv.fr/plan-national-sante-environnement-pnse-3-2015-2019.html (verified on March 20th, 2015)

  • Pottier M, García de la Torre VS, Victor C, David LC, Chalot M, Thomine S (2015) Genotypic variations in the dynamics of metal concentrations in poplar leaves: a field study with a perspective on phytoremediation. Environ Pollut 199:73–82

    Article  CAS  Google Scholar 

  • Powell GW, Borck EW (2004) Competition and facilitation in mixtures of aspen seedlings, alfalfa, and marsh reedgrass. Can J For Res 34:1858–1869

    Article  Google Scholar 

  • PRSE 2 Aquitaine (2008) Plan Régional Santé Environnement 2009–2013 http://www.prse-aquitaine.fr/ (verified on March 20th, 2015)

  • Radović J, Sokolović D, Marković J (2009) Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol Anim Husb 25:465–475

    Article  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I. Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532

    Article  CAS  Google Scholar 

  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci Total Environ 505:712–723

    Article  CAS  Google Scholar 

  • Sun MM, Fu DQ, Teng T, Shen YY, Luo YM, Li ZG, Christie P (2011) In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J Soils Sediments 11:980–989

    Article  CAS  Google Scholar 

  • Shi Z, Allen HE, Di Toro DM, Suen-Zone L, Harsh JB (2013) Predicting PbII adsorption on soils: the roles of soil organic matter, cation competition and iron (hydr)oxides. Environ Chem. doi:10.1071/EN13153

    Google Scholar 

  • Teng Y, Shen YY, Luo YM, Sun XH, Sun MM, Fu DQ et al (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186:1271–1276

    Article  CAS  Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Frontiers Plant Sci. doi:10.3389/fpls.2015.00032

    Google Scholar 

  • Tremel-Schaub A, Feix I (2005) Contamination des Sols. Transferts des Sols vers les Plantes. EDP Sciences/ADEME, Paris, Paris, 413 p

    Google Scholar 

  • USEPA (2011) Brownfields Federal Program Guide. http://www.epa.gov/brownfields/partners/2011_fpg.pdf (verified on March 20th, 2015)

  • Vamerali T, Bandiera M, Mosca G (2011) In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: Effects of soil management. Chemosphere 83:1241–1248

    Article  CAS  Google Scholar 

  • Vandecasteele B, Lauriks R, De Vos B, Tack FM (2003) Cd and Zn concentration in hybrid poplar foliage and leaf beetles grown on polluted sediment-derived soils. Environ Monit Assess 89:263–283

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Villaneau E, Perry-Giraud C, Saby N, Jolivet C, Marot F, Maton D, Floch-Barneaud A, Antoni V, Arrouays D (2008) Détection des valeurs anomaliques d’éléments traces métalliques dans les sols à l’aide du réseau de mesure de la qualité des sols. Etude et Gestion des Sols 15:183–200

    Google Scholar 

  • Violante A, Huang PM, Gadd GM (2008) Biophysico-chemical processes of heavy metals and metalloids in soil environments. John Wiley & Sons Inc., Hoboken, NJ, 678 pp

    Google Scholar 

  • Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28:197–214

    Article  CAS  Google Scholar 

  • Wang Y, Huang J, Gao Y (2012) Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. Plos One 7(11), e48669. doi:10.1371/journal.pone.0048669

    Article  CAS  Google Scholar 

  • Wild CP (2005) Complementing the genome with an "exposome": the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark 14:1847–1850

    Article  CAS  Google Scholar 

  • Zheng N, Liu JS, Wang QC, Liang ZZ (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting area, Northeast of China. Sci Total Environ 408:726–733

    Article  CAS  Google Scholar 

  • Zribi K, Nouairi I, Slama I, Talbi-Zribi O, Mhadhbi H (2015) Medicago sativaSinorhizobium meliloti symbiosis promotes the bioaccumulation of zinc in nodulated roots. Int J Phytoremediation 17:49–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the city of Bordeaux (D 2013–111). Authors greatly thank W. Galland (Master student) from the UMR BIOGECO INRA 1202 (Bordeaux, France), for his precious help, both on the field and in the laboratory. This study was carried out in the framework of the Cluster of Excellence COTE.

Compliance with ethical standards

The manuscript has not been submitted to more than one journal for simultaneous consideration.

The manuscript has not been published previously (partly or in full), unless the new work concerns an expansion of previous work (please provide transparency on the re-use of material to avoid the hint of text-recycling (“self-plagiarism”)).

A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”).

No data have been fabricated or manipulated (including images) to support your conclusions.

No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other works must be given (this includes material that is closely copied (near verbatim), summarized and/or paraphrased), quotation marks are used for verbatim copying of material, and permissions are secured for material that is copyrighted.

Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities—tacitly or explicitly—at the institute/organization where the work has been carried out, before the work is submitted.

Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Marchand.

Additional information

Responsible editor: Elena Maestri

Highlight

Medicago sativa well developed on an alkaline soil highly contaminated by trace elements and polycyclic aromatic hydrocarbons at a former harbor dock and displayed low trace element concentrations in its shoots. Phaseolus vulgaris was a relevant bioindicator of soil phytotoxicity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 34 kb)

ESM 3

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchand, L., Sabaris, CQ., Desjardins, D. et al. Plant responses to a phytomanaged urban technosol contaminated by trace elements and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 23, 3120–3135 (2016). https://doi.org/10.1007/s11356-015-4984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4984-7

Keywords

Navigation