Skip to main content
Log in

Phosphorus-31 nuclear magnetic resonance assignments of biogenic phosphorus compounds in sediment of an artificial Fuyangxin River, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

River eutrophication could drastically influence the phosphorus (P) in the water and sediment. To understand the biogenic-P species, distribution and bioconversion, five sediment samples were collected from an artificial river, and analyzed by phosphorus-31 nuclear magnetic resonance (31P-NMR). The P pollution in the water and sediment were both severe. The average concentrations of total P (TP) and solution reactive phosphorus in the water were 3.0 and 2.6 mg L−1, respectively, which surpass grade V of the national quality standard (China) and should not be used for any purpose. The river sediments accumulated significant inorganic phosphorus (Pi) and organic phosphorus (Po); in the P fractionation, the rank order of the P fractions was as follows: Ca-P > NaOH-Pi > Res-P > KCl-P > NaOH-Po, with average relative proportions of 25.1:16.8:6.6:1.7:1:0. Six P compounds were detected in the NaOH-EDTA extract by 31P-NMR. Mono-P (8.96–29.58 %) was the dominant forms of biogenic-P, and other smaller fractions of biogenic-P were also observed, including pyro-P (0.22–0.86 %), DNA-P (0.75–2.03 %), phon-P (0–1.57 %), and lipids-P (0–2.66 %). The TP and biogenic-P decreased along the direction of flows, with their average relative proportions 7.97:1.20:1.49:1.00:1.00 and 40.87:2.34:3.46:1.60:1 from the upstream to downstream, respectively. The concentration and species of Po in NaOH-Po were lower than found in 31P-NMR analysis in this research. Thus, the use of 0.25 M NaOH and 50 mM EDTA extracts and solution 31P-NMR analysis was a more accurate method for quantifying biogenic-P in the river sediments than P fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren J, Tranvik L, Gogoll A, Waldebäck M, Markides K, Rydin E (2005) Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR. Environ Sci Technol 39(3):867–872

    Article  CAS  Google Scholar 

  • Ahlgren J, Reitzel K, Tranvik L, Gogoll A, Rydin E (2006) Degradation of organic phosphorus compounds in anoxic Baltic Sea sediments: a 31P nuclear magnetic resonance study. Limnol Oceanogr 51(5):2341–2348

    Article  CAS  Google Scholar 

  • An M, Huang SL (2007) Distribution and correlation between total content of phosphorus, iron and organic matter of surface sediment in Haihe River mainstream. Res Environ Sci 20(3):63–67 (in Chinese)

    Google Scholar 

  • Aspila KI, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic organic and total phosphate in sediments. Analyst 101:187–197

    Article  CAS  Google Scholar 

  • Bai XL, Ding SM, Fan CX, Liu T, Shi D, Zhang L (2009) Organic phosphorus species in surface sediments of a large shallow, eutrophic lake, Lake Taihu, China. Environ Pollut 157(8–9):2507–2513

    Article  CAS  Google Scholar 

  • Brandes JA, Ingall ED, Paterson D (2007) Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy. Mar Chem 103(3–4):250–265

    Article  CAS  Google Scholar 

  • Cade-Menun BJ (2005) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66(2):359–371

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Liu CW, Nunlist R, McColl JG (2002) Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times. J Environ Qual 31(2):457–465

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Benitez-Nelson CR, Pellechia P, Paytan A (2005) Refining 31P nuclear magnetic resonance spectroscopy for marine particulate samples: storage conditions and extraction recovery. Mar Chem 97(3–4):293–306

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Navaratnam JA, Walbridge MR (2006) Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ Sci Technol 40(24):7874–7880

    Article  CAS  Google Scholar 

  • Cardoza LA, Korir AK, Otto WH, Wurrey CJ, Larive CK (2004) Applications of NMR spectroscopy in environmental science. Prog Nucl Magn Reson Spectrosc 45:209–238

    Article  CAS  Google Scholar 

  • Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci U S A 105(12):11039–11040

    Article  CAS  Google Scholar 

  • Dierberg FE, Debusk TA, Larson NR, Kharbanda MD, Chan N, Gabriel MC (2011) Effects of sulfate amendments on mineralization and phosphorus release from South Florida (USA) wetland soils under anaerobic conditions. Soil Biol Biochem 43(1):31–45

    Article  CAS  Google Scholar 

  • Golterman HL (2001) Phosphate release from anoxic sediments or ‘What did Mortimer really write?’. Hydrobiologia 450(1–3):99–106

    Article  CAS  Google Scholar 

  • Golterman H, Paing J, Serrano L, Gomez E (1998) Presence of and phosphate release from polyphosphates or phytate phosphate in lake sediments. Hydrobiologia 364:99–104

    Article  Google Scholar 

  • Hieltjes AHM, Lijklema L (1980) Fractionation of inorganic phosphorus in calcareous sediments. J Environ Qual 9(3):405–407

    Article  CAS  Google Scholar 

  • Hupfer M, Gächter R, Ruegger H (1995) Polyphosphate in lake sediments: 31P NMR spectroscopy as a tool for its identification. Limnol Oceanogr 40(3):610–617

    Article  Google Scholar 

  • Hupfer M, Rübe B, Schmieder P (2004) Origin and diagenesis of polyphosphate in lake sediments: a 31P-NMR study. Limnol Oceanogr 49(1):1–10

    Article  CAS  Google Scholar 

  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235/236(1):731–743

    Article  Google Scholar 

  • Li N, Shan BQ, Zhang H, Zhang JL (2010) Organic phosphorus forms in the sediments in the downstream channel of North Canal River watershed. Environ Sci 31(12):2911–2916 (in Chinese)

    Google Scholar 

  • Liu JY, Wang H, Yang HJ, Ma YJ, Cai OC (2009) Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environ Pollut 157(1):49–56

    Article  CAS  Google Scholar 

  • Livingstone D, Khoja TM, Whitton BA (1982) Laboratory studies on phosphorus sources for an upper teesdale uk calothrix parietina. Br Phycol J 17:235

    Google Scholar 

  • McDowell RW, Stewart I, Cade-Menun BJ (2006) An examination of spin–lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual 35(1):293–302

    Article  CAS  Google Scholar 

  • Mckelvie ID (2007) Inositol phosphates in aquatic systems. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates link agriculture and the environment. CABI, UK, pp 261–277

    Chapter  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in nature waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST (2010) Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr 55(5):2161–2169

    Article  CAS  Google Scholar 

  • Pernet-Coudrier B, Qi WX, Liu HJ, Müller B, Berg M (2012) Sources and pathways of nutrients in the semi-arid region of Beijing-Tianjin, China. Environ Sci Technol 46(10):5294–5301

    Article  CAS  Google Scholar 

  • Pierzynski GM (2004) Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin No.396. North Carolina State University Press, Raleigh

    Google Scholar 

  • Qu HJ, Kroeze C (2010) Past and future trends in nutrients export by rivers to the coastal waters of China. Sci Total Environ 408(9):2075–2086

    Article  CAS  Google Scholar 

  • Reitzel K, Ahlgren J, Gogoll A, Jensen HS, Rydin E (2006a) Characterization of phosphorus in sequential extracts from lake sediments using 31P nuclear magnetic resonance spectroscopy. Can J Fish Aquat Sci 63(8):1686–1699

    Article  CAS  Google Scholar 

  • Reitzel K, Ahlgren J, Gogoll A, Rydin E (2006b) Effects of aluminum treatment on phosphorus, carbon, and nitrogen distribution in lake sediment: a 31P NMR study. Water Res 40(4):647–654

    Article  CAS  Google Scholar 

  • Reitzel K, Ahlgren J, Debrabandere H, Waldebäck M, Gogoll A, Tranvik L, Rydin E (2007) Degradation rates of organic phosphorus in lake sediment. Biogeochemistry 82(1):15–28

    Article  CAS  Google Scholar 

  • Reitzel K, Jensen HS, Flindt M, Andersen F (2009) Identification of dissolved nonreactive phosphorus in freshwater by precipitation with aluminum and subsequent 31P NMR analysis. Environ Sci Technol 43(14):5391–5397

    Article  CAS  Google Scholar 

  • Rusu V, Postolachi L, Povar I, Alder A, Lupascu T (2012) Dynamics of phosphorus forms in the bottom sediments and their interstitial water for the Prut River (Moldova). Environ Sci Pollut Res 19(8):3126–3131

    Article  CAS  Google Scholar 

  • Schauser I, Chorus I, Lewandowski J (2006) Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochim Hydrobiol 34(4):325–332

    Article  CAS  Google Scholar 

  • Shinohara R, Imai A, Kawasaki N, Komatsu K, Kohzu A, Miura S, Sano T, Satou T, Tomioka N (2012) Biogenic phosphorus compounds in sediment and suspended particles in a shallow eutrophic lake: a 31P-nuclear magnetic resonance (31P NMR) study. Environ Sci Technol 46(19):10572–10578

    Article  CAS  Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM, Mckelvie ID (2002) Inositol phosphates in the environment. Phil Trans R Soc B 357(1420):449–469

    Article  CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003a) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Sci Soc Am J 67(2):497–510

    Article  CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34(8):1199–1210

    Article  CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66(2):294–306

    Article  CAS  Google Scholar 

  • Turner BL, Newman S, Reddy KR (2006) Overestimation of organic phosphorus in wetlands soils by alkaline extraction and molybdate colorimetry. Environ Sci Technol 40(10):3349–3354

    Article  CAS  Google Scholar 

  • Wang JY, Pant HK (2010a) Enzymatic hydrolysis of organic phosphorus in river bed sediments. Ecol Eng 36(7):963–968

    Article  Google Scholar 

  • Wang JY, Pant HK (2010b) Phosphorus sorption characteristics of the Bronx River bed sediments. Chem Speciat Bioavailab 22(3):171–181

    Article  CAS  Google Scholar 

  • Wang JY, Pant HK (2010c) Identification of organic phosphorus compounds in the Bronx River bed sediments by phosphorus-31 nuclear magnetic resonance spectroscopy. Environ Monit Assess 171(1–4):309–319

    Article  CAS  Google Scholar 

  • Wang JX, Pant H (2011) Land use impact on bioavailable phosphorus in the Bronx river, New York. J Environ Prot 2:342–358

    Article  CAS  Google Scholar 

  • Wang JX, Pant H (2012) Estimation of phosphorus bioavailability in the water column of the Bronx river, New York. J Environ Prot 3:316–323

    Article  CAS  Google Scholar 

  • Zhang RY, Wu FC, He ZQ, Zheng J, Song BA, Jin LH (2009) Phosphorus composition in sediments from seven different trophic lakes, China: a phosphorus-31 NMR study. J Environ Qual 38(1):353–359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jingxin Yang and Dr. Hongwei Li for 31P-NMR analysis (Beijing Nuclear Magnetic Resonance Center). This work was supported by the National Natural Science Foundation of China (grant no. 20907067 and 21107126) and the National Water Pollution Control and Management Technology Major Projects of China (2012ZX07203-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqing Shan.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Shan, B., Zhang, H. et al. Phosphorus-31 nuclear magnetic resonance assignments of biogenic phosphorus compounds in sediment of an artificial Fuyangxin River, China. Environ Sci Pollut Res 21, 3803–3812 (2014). https://doi.org/10.1007/s11356-013-2322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2322-5

Keywords

Navigation