Skip to main content
Log in

Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the significance of sources around measurement sites, assist the development of control strategies for the important sources and mitigate the adverse effects of air pollution due to particle size.

Methods

In this study, sampling was conducted at two sites located in urban/industrial and residential areas situated at roadsides along the Brisbane Urban Corridor. Ultrafine and fine particle measurements obtained at the two sites in June–July 2002 were analysed by positive matrix factorization.

Results

Six sources were present, including local traffic, two traffic sources, biomass burning and two currently unidentified sources. Secondary particles had a significant impact at site 1, while nitrates, peak traffic hours and main roads located close to the source also affected the results for both sites.

Conclusions

This significant traffic corridor exemplifies the type of sources present in heavily trafficked locations and future attempts to control pollution in this type of environment could focus on the sources that were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Env 38(19):3025–3038

    Article  CAS  Google Scholar 

  • Buzcu-Guven B, Brown SG, Frankel A, Hafner HR, Roberts PT (2007) Analysis and apportionment of organic carbon and fine particulate matter sources at multiple sites in the Midwestern United States. J Air Waste Manage Assoc 57(5):606–619

    Article  CAS  Google Scholar 

  • Cuccia E, Bernardoni V, Massabò D, Prati P, Valli G, Vecchi R (2010) An alternative way to determine the size distribution of airborne particulate matter. Atmos Env 44(27):3304–3313

    Article  CAS  Google Scholar 

  • Friend AJ, Ayoko GA (2009) Multi-criteria ranking and source apportionment of fine particulate matter in Brisbane, Australia. Environ Chem 6(5):398–406

    Article  CAS  Google Scholar 

  • Friend AJ, Ayoko GA, Elbagir SG (2011a) Source apportionment of fine particles at a suburban site in Queensland, Australia. Environ Chem 8(2):163–173

    Article  CAS  Google Scholar 

  • Friend AJ, Ayoko GA, Stelcer E, Cohen D (2011b) Source apportionment of PM2.5 at two receptor sites in Brisbane, Australia. Environ Chem 8(6):569–580

    Article  CAS  Google Scholar 

  • Gu J, Pitz M, Schnelle-Kreis J, Diemer J, Reller A, Zimmermann R, Soentgen J, Stoelzel M, Wichmann HE, Peters A, Cyrys J (2011) Source apportionment of ambient particles: comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmos Env 45(10):1849–1857

    Article  CAS  Google Scholar 

  • Han JS, Moon KJ, Lee SJ, Kim YJ, Ryu SY, Cliff SS, Yi SM (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia. Atmos Chem Phys 6(1):211–223

    Article  CAS  Google Scholar 

  • Kasumba J, Hopke PK, Chalupa DC, Utell MJ (2009) Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Sci Total Environ 407(18):5071–5084

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK (2004) Comparison between conditional probability function and nonparametric regression for fine particle source directions. Atmos Env 38(28):4667–4673

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003a) Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manage Assoc 53(6):731–739

    Article  CAS  Google Scholar 

  • Kim E, Larson TV, Hopke PK, Slaughter C, Sheppard LE, Claiborn C (2003b) Source identification of PM2.5 in an arid northwest US city by positive matrix factorization. Atmos Res 66(4):291–305

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Larson TV, Covert DS (2004) Analysis of ambient particle size distributions using unmix and positive matrix factorization. Environ Sci Technol 38(1):202–209

    Article  CAS  Google Scholar 

  • Lee JH, Hopke PK (2006) Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. Atmos Env 40(Supplement 2):S360–S377

    Article  CAS  Google Scholar 

  • Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Env 33(19):3201–3212

    Article  CAS  Google Scholar 

  • Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manage Assoc 50(9):1565–1618

    Article  CAS  Google Scholar 

  • Lippmann M (2009) Semi-continuous speciation analyses for ambient air particulate matter: an urgent need for health effects studies. J Expo Sci Env Epidemiol 19(3):235–247

    Article  CAS  Google Scholar 

  • Lippmann M, Chen L-C (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 39(10):865–913

    Article  CAS  Google Scholar 

  • Mauderly JL, Chow JC (2008) Health effects of organic aerosols. Inhalation Toxicol 20(3):257–288

    Article  CAS  Google Scholar 

  • Mazzei F, Lucarelli F, Nava S, Prati P, Valli G, Vecchi R (2007) A new methodological approach: the combined use of two-stage streaker samplers and optical particle counters for the characterization of airborne particulate matter. Atmos Env 41(26):5525–5535

    Article  CAS  Google Scholar 

  • Moon KJ, Han JS, Ghim YS, Kim YJ (2008) Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environ Int 34(5):654–664

    Article  CAS  Google Scholar 

  • Morawska L, Johnson GR, He C, Ayoko GA, Lim MCH, Swanson C, Ristovski ZD, Moore M (2006) Particle number emissions and source signatures of an industrial facility. Environ Sci Technol 40(3):803–814

    Article  CAS  Google Scholar 

  • Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Env 42(35):8113–8138

    Article  CAS  Google Scholar 

  • NEPC (1998) National environmental protection (ambient air quality) measure. National Environmental Protection Council, Adelaide

    Google Scholar 

  • NEPC (2003) Variation to the national environment protection (ambient air quality) measure for particles as PM. National Environment Protection Council, Adelaide

    Google Scholar 

  • Ogulei D, Hopke PK, Wallace LA (2006a) Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air 16(3):204–215

    Article  CAS  Google Scholar 

  • Ogulei D, Hopke PK, Zhou L, Patrick Pancras J, Nair N, Ondov JM (2006b) Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmos Env 40(Supplement 2):S396–S410

    Article  CAS  Google Scholar 

  • Ogulei D, Hopke PK, Chalupa DC, Utell MJ (2007a) Modeling source contributions to submicron particle number concentrations measured in Rochester, New York. Aerosol Sci Technol 41(2):179–201

    Article  CAS  Google Scholar 

  • Ogulei D, Hopke PK, Ferro AR, Jaques PA (2007b) Factor analysis of submicron particle size distributions near a major United States–Canada trade bridge. J Air Waste Manage Assoc 57(2):190–203

    Article  Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37(1):23–35

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization—a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5(2):111–126

    Article  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Amer Med Assoc 287(9):1132–1141

    Article  CAS  Google Scholar 

  • Reff A, Eberly SI, Bhave PV (2007) Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. J Air Waste Manage Assoc 57(2):146–154

    Article  CAS  Google Scholar 

  • Ristovski ZD, Wardoyo AYP, Morawska L, Jamriska M, Carr S, Johnson G (2010) Biomass burning influenced particle characteristics in Northern Territory Australia based on airborne measurements. Atmos Res 96(1):103–109

    Article  CAS  Google Scholar 

  • Schlesinger RB (2007) The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review. Inhalation Toxicol 19(10):811–832

    Article  CAS  Google Scholar 

  • Song XH, Polissar AV, Hopke PK (2001) Sources of fine particle composition in the northeastern US. Atmos Env 35(31):5277–5286

    Article  CAS  Google Scholar 

  • Sun J, Zhang Q, Canagaratna MR, Zhang Y, Ng NL, Sun Y, Jayne JT, Zhang X, Zhang X, Worsnop DR (2010) Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer. Atmos Env 44(1):131–140

    Article  CAS  Google Scholar 

  • Thimmaiah D, Hovorka J, Hopke PK (2009) Source apportionment of winter submicron Prague aerosols from combined particle number size distribution and gaseous composition data. Aerosol Air Qual Res 9(2):209–236

    CAS  Google Scholar 

  • Thomas S, Morawska L (2002) Size-selected particles in an urban atmosphere of Brisbane, Australia. Atmos Env 36(26):4277–4288

    Article  CAS  Google Scholar 

  • Wahlin P, Palmgren F, Van Dingenen R (2001) Experimental studies of ultrafine particles in streets and the relationship to traffic. Atmos Env 35(Supplement 1):S63–S69

    Article  CAS  Google Scholar 

  • Yue W, Stoelzel M, Cyrys J, Pitz M, Heinrich J, Kreyling WG, Wichmann HE, Peters A, Wang S, Hopke PK (2008) Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Sci Total Environ 398(1–3):133–144

    Article  CAS  Google Scholar 

  • Zhou L, Kim E, Hopke PK, Stanier CD, Pandis S (2004) Advanced factor analysis on Pittsburgh particle size-distribution data. Aerosol Sci Technol 38(Supplement 1):118–132

    CAS  Google Scholar 

  • Zhou L, Hopke PK, Stanier CO, Pandis SN, Ondov JM, Pancras JP (2005a) Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. J Geophys Res-Atmos 110(D7):D07S18/01–D07S18/14

    Google Scholar 

  • Zhou L, Kim E, Hopke PK, Stanier C, Pandis SN (2005b) Mining airborne particulate size distribution data by positive matrix factorization. J Geophys Res-Atmos 110(D7):D07S19/01–D07S19/15

    Google Scholar 

  • Zhu Y, Hinds WC, Kim S, Shen S, Sioutas C (2002) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Env 36(27):4323–4335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godwin A. Ayoko.

Additional information

Responsible editor: Euripides Stephanou

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, A.J., Ayoko, G.A., Jayaratne, E.R. et al. Source apportionment of ultrafine and fine particle concentrations in Brisbane, Australia. Environ Sci Pollut Res 19, 2942–2950 (2012). https://doi.org/10.1007/s11356-012-0803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0803-6

Keywords

Navigation