Skip to main content
Log in

Testing for Measurement Invariance with Respect to an Ordinal Variable

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Researchers are often interested in testing for measurement invariance with respect to an ordinal auxiliary variable such as age group, income class, or school grade. In a factor-analytic context, these tests are traditionally carried out via a likelihood ratio test statistic comparing a model where parameters differ across groups to a model where parameters are equal across groups. This test neglects the fact that the auxiliary variable is ordinal, and it is also known to be overly sensitive at large sample sizes. In this paper, we propose test statistics that explicitly account for the ordinality of the auxiliary variable, resulting in higher power against “monotonic” violations of measurement invariance and lower power against “non-monotonic” ones. The statistics are derived from a family of tests based on stochastic processes that have recently received attention in the psychometric literature. The statistics are illustrated via an application involving real data, and their performance is studied via simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. Available from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1100705.

    Article  Google Scholar 

  • Bauer, D.J., & Hussong, A.M. (2009). Psychometric approaches for developing commensurate measures across independent studies: traditional and new models. Psychological Methods, 14, 101–125.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bentler, P.M., & Bonett, D.G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.

    Article  Google Scholar 

  • Browne, M.W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K.A. Bollen & J.S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park: Sage.

    Google Scholar 

  • Dolan, C.V., & van der Maas, H.L.J. (1998). Fitting multivariate normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227–253.

    Article  Google Scholar 

  • Emmons, R.A. & McCullough, M.E. (Eds.) (2004). The psychology of gratitude. New York: Oxford University Press.

    Google Scholar 

  • Ferguson, T.S. (1996). A course in large sample theory. London: Chapman & Hall.

    Book  Google Scholar 

  • Froh, J.J., Fan, J., Emmons, R.A., Bono, G., Huebner, E.S., & Watkins, P. (2011). Measuring gratitude in youth: assessing the psychometric properties of adult gratitude scales in children and adolescents. Psychological Assessment, 23, 311–324.

    Article  PubMed  Google Scholar 

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., et al. (2012). mvtnorm: multivariate normal and t distributions [Computer software manual]. Available from http://CRAN.R-project.org/package=mvtnorm (R package version 0.9-9992).

  • Hjort, N.L., & Koning, A. (2002). Tests for constancy of model parameters over time. Nonparametric Statistics, 14, 113–132.

    Article  Google Scholar 

  • Hothorn, T., & Zeileis, A. (2008). Generalized maximally selected statistics. Biometrics, 64(4), 1263–1269.

    Article  PubMed  Google Scholar 

  • Huber, P.J. (1967). The behavior of maximum likelihood estimation under nonstandard conditions. In L.M. LeCam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Berkeley: University of California Press.

    Google Scholar 

  • Lubke, G.H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.

    Article  PubMed  Google Scholar 

  • McCullough, M.E., Emmons, R.A., & Tsang, J.-A. (2002). The grateful disposition: a conceptual and empirical topography. Journal of Personality and Social Psychology, 82, 112–127.

    Article  PubMed  Google Scholar 

  • Mellenbergh, G.J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127–143.

    Article  Google Scholar 

  • Merkle, E.C., & Zeileis, A. (2013). Tests of measurement invariance without subgroups: a generalization of classical methods. Psychometrika, 78, 59–82.

    Article  PubMed  Google Scholar 

  • Millsap, R.E. (2011). Statistical approaches to measurement invariance. New York: Routledge.

    Google Scholar 

  • Molenaar, D., Dolan, C.V., Wicherts, J.M., & van der Mass, H.L.J. (2010). Modeling differentiation of cognitive abilities within the higher-order factor model using moderated factor analysis. Intelligence, 38, 611–624.

    Article  Google Scholar 

  • Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554–571.

    Article  PubMed  Google Scholar 

  • R Development Core Team. (2012). R: a language and environment for statistical computing [Computer software manual]. URL http://www.R-project.org/. Vienna, Austria. (ISBN 3-900051-07-0)

  • Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48(2), 136. Available from http://www.jstatsoft.org/v48/i02/.

    Google Scholar 

  • Satorra, A. (1989). Alternative test criteria in covariance structure analysis: a unified approach. Psychometrika, 54, 131–151.

    Article  Google Scholar 

  • Satorra, A., & Bentler, P.M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507–514.

    Article  Google Scholar 

  • Sörbom, D. (1989). Model modification. Psychometrika, 54, 371–384.

    Article  Google Scholar 

  • Strobl, C., Kopf, J., & Zeileis, A. (2013). A new method for detecting differential item functioning in the Rasch model. Psychometrika. doi:10.1007/s11336-013-9388-3.

    PubMed  Google Scholar 

  • Thomas, M., & Watkins, P. (2003). Measuring the grateful trait: development of the revised GRAT. Poster presented at the Annual Convention of the Western Psychological Association, Vancouver, BC.

  • Vandenberg, R.J., & Lance, C.E. (2000). A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.

    Article  Google Scholar 

  • Yuan, K.-H., & Bentler, P.M. (1997). Mean and covariance structure analysis: theoretical and practical improvements. Journal of the American Statistical Association, 92, 767–774.

    Article  Google Scholar 

  • Zeileis, A. (2006a). Implementing a class of structural change tests: an econometric computing approach. Computational Statistics & Data Analysis, 50(11), 2987–3008.

    Article  Google Scholar 

  • Zeileis, A. (2006b). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16(9), 1–16. Available from http://www.jstatsoft.org/v16/i09/.

    Google Scholar 

  • Zeileis, A., & Hornik, K. (2007). Generalized M-fluctuation tests for parameter instability. Statistica Neerlandica, 61, 488–508.

    Article  Google Scholar 

  • Zeileis, A., Leisch, F., Hornik, K., & Kleiber, C. (2002). strucchange: an R package for testing structural change in linear regression models. Journal of Statistical Software, 7, 1–38. Available from http://www.jstatsoft.org/v07/i02/.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant SES-1061334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar C. Merkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkle, E.C., Fan, J. & Zeileis, A. Testing for Measurement Invariance with Respect to an Ordinal Variable. Psychometrika 79, 569–584 (2014). https://doi.org/10.1007/s11336-013-9376-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9376-7

Key words

Navigation