Skip to main content

Advertisement

Log in

An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Aneurysm (Rupture of blood vessels) may happen in the cerebrum, abdominal aorta and thoracic aorta of humans, which has a high fatal rate. The advancement of the artificial technologies specifically machine learning algorithms and deep learning models have attempted to predict the aneurysm, which may reduce the death rate. The main objective of this paper is to provide the review of various algorithms and models for the early prediction of the various types of aneurysms. The focused literature review was conducted from the preferred journals from 2007 to 2022 on various parameters such as way of collecting images, the techniques used, number of images used in data set, performance metrics and future work. The summarized overview of advances in prediction of aneurysms using the machine learning algorithms from non linear kernel support regression algorithm to 3D Unet architecture of deep learning models starting from CT scan images to final performance analysis in prediction. The range of sensitivity, specificity and area under receiving operating characteristic was from 0. 7 to 1 for the abdominal aortic aneurysm detection, intracranial aneurysm detection. The thoracic aortic aneurysm was not concentrated much in the literature review, so the prediction of thoracic aortic aneurysm using machine learning as well as deep learning model is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Wang, S. W., Huang, Y. B., Huang, J. W., Chiu, C. C., Lai, W. T., & Chen, C. Y. (2015). Epidemiology, clinical features, and prescribing patterns of aortic aneurysm in Asian population from 2005 to 2011. Medicine, 94(41), e1716.

    Google Scholar 

  2. Sidloff, D., Stather, P., Dattani, N., Bown, M., Thompson, J., Sayers, R., & Choke, E. (2014). Aneurysm global epidemiology study: public health measures can further reduce abdominal aortic aneurysm mortality. Circulation, 129(7), 747–753.

    Google Scholar 

  3. Hartnell, G. G. (2001). Imaging of aortic aneurysms and dissection: CT and MRI. Journal of Thoracic Imaging, 16(1), 35–46.

    Google Scholar 

  4. https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithmf10ba6e38234

  5. Shukla, K. N., Potnis, A., & Dwivedi, P. (2019). A review on image enhancement techniques. International Journal of Engineering and Applied Computer Science (IJEACS), 2(7), 232–235. https://doi.org/10.24032/ijeacs/0207/05

    Article  Google Scholar 

  6. Shanthi, S., Aruljyothi, L., Balasundaram, M. B., Janakiraman, A., Nirmaladevi, K., & Pyingkodi, M. (2022). Artificial intelligence applications in different imaging modalities for corneal topography. Survey of Ophthalmology, 67(3), 801–816.

    Google Scholar 

  7. Perumal, S., & Velmurugan, T. (2018). Preprocessing by contrast enhancement techniques for medical images. International Journal of Pure and Applied Mathematics, 118(18), 3681–3688.

    Google Scholar 

  8. Pratiwi, D., & Kartowisastro, I. H. (2015). Object segmentation under varying illumination effects. NewTrends in Intelligent Information and Database Systems Studies in Computational Intelligence. https://doi.org/10.1007/978-3-319-16211-9_2

    Article  Google Scholar 

  9. Rajalaxmi, R. R., Natesan, P., Krishnamoorthy, N., & Ponni, S. (2019). Regression model for predicting engineering students academic performance. International Journal of Recent Technology and Engineering, 7(6S3), 71–75.

    Google Scholar 

  10. Bodapati, J. D., & Veeranjaneyulu, N. (2019). Feature extraction and classification using deep convolutional neural networks. Journal of Cyber Security and Mobility, 8(2), 261–276. https://doi.org/10.13052/jcsm2245-1439.825

    Article  Google Scholar 

  11. Novakovic, J. D., Veljovic, A., Ilic, S. S., Papic, Z., & Tomovic, M. (2017). Evaluation of classification models in machine learning. Theory and Applications of Mathematics and Computer Science, 7(1), 39–46.

    MathSciNet  Google Scholar 

  12. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065.

    Google Scholar 

  13. Lee, R., Jarchi, D., Perera, R., Jones, A., Cassimjee, I., Handa, A., Clifton, D. A., Bellamkonda, K., Woodgate, F., Killough, N., & Maistry, N. (2018). Applied machine learning for the prediction of growth of abdominal aortic aneurysm in humans. EJVES Short Reports, 39, 24–28.

    Google Scholar 

  14. Wang, T., Jin, W., Liang, F., & Alastruey, J. (2021). Machine learning-based pulse wave analysis for early detection of abdominal aortic aneurysms using in silico pulse waves. Symmetry, 13(5), 804.

    Google Scholar 

  15. Lindquist Liljeqvist, M., Bogdanovic, M., Siika, A., Gasser, T. C., Hultgren, R., & Roy, J. (2021). Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Scientific Reports, 11(1), 1–10.

    Google Scholar 

  16. Shum, J., Di Martino, E. S., Muluk, S. C., & Finol, E. A. (2011). Machine learning techniques for the assessment of AAA rupture risk. ASME, 54587, 71–77.

    Google Scholar 

  17. Lu, J. T., Brooks, R., Hahn, S., Chen, J., Buch, V., Kotecha, G., Andriole, K. P., Ghoshhajra, B., Pinto, J., Vozila, P. and Michalski, M. (2019). DeepAAA: Clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning. arXiv:1907.02567v

  18. Hong, H. A. & Sheikh, U. U. (2016). Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning. Universiti Teknologi Repository

  19. Jiang, Z., Do, H. N., Choi, J., Lee, W., & Baek, S. (2020). A deep learning approach to predict abdominal aortic aneurysm expansion using longitudinal data. Frontiers in Physics, 7, 235.

    Google Scholar 

  20. Golla, A. K., Tönnes, C., Russ, T., Bauer, D. F., Froelich, M. F., Diehl, S. J., Schoenberg, S. O., Keese, M., Schad, L. R., Zöllner, F. G., & Rink, J. S. (2021). Automated screening for abdominal aortic aneurysm in CT scans under clinical conditions using deep learning. Diagnostics, 11(11), 2131.

    Google Scholar 

  21. Heo, J., Park, S. J., Kang, S. H., Oh, C. W., Bang, J. S., & Kim, T. (2020). Prediction of intracranial aneurysm risk using machine learning. Scientific reports, 10(1), 1–10.

    Google Scholar 

  22. Kim, H. C., Rhim, J. K., Ahn, J. H., Park, J. J., Moon, J. U., Hong, E. P., Kim, M. R., Kim, S. G., Lee, S. H., Jeong, J. H., & Choi, S. W. (2019). Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. Journal of clinical medicine, 8(5), 683.

    Google Scholar 

  23. Shi, Z., Miao, C., Schoepf, U. J., Savage, R. H., Dargis, D. M., Pan, C., Chai, X., Li, X. L., Xia, S., Zhang, X., & Gu, Y. (2020). A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nature communications, 11(1), 6090.

    Google Scholar 

  24. Park, A., Chute, C., Rajpurkar, P., Lou, J., Ball, R. L., Shpanskaya, K., Jabarkheel, R., Kim, L. H., McKenna, E., Tseng, J., & Ni, J. (2019). Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA network open, 2(6), e195600–e195600.

    Google Scholar 

  25. Comelli, A., Dahiya, N., Stefano, A., Benfante, V., Gentile, G., Agnese, V., Raffa, G. M., Pilato, M., Yezzi, A., Petrucci, G., & Pasta, S. (2021). Deep learning approach for the segmentation of aneurysmal ascending aorta. Biomedical Engineering Letters, 11, 15–24.

    Google Scholar 

  26. Ueda, D., Yamamoto, A., Nishimori, M., Shimono, T., Doishita, S., Shimazaki, A., Katayama, Y., Fukumoto, S., Choppin, A., Shimahara, Y., & Miki, Y. (2019). Deep learning for MR angiography: Automated detection of cerebral aneurysms. Radiology, 290(1), 187–194.

    Google Scholar 

  27. Sichtermann, T., Faron, A., Sijben, R., Teichert, N., Freiherr, J., & Wiesmann, M. (2019). Deep learning–based detection of intracranial aneurysms in 3D TOF-MRA. American Journal of Neuroradiology, 40(1), 25–32.

    Google Scholar 

  28. Chabert, S., Mardones, T., Riveros, R., Godoy, M., Veloz, A., Salas, R., & Cox, P. (2017). Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Research Ideas and Outcomes, 3, e1173.

    Google Scholar 

  29. Yang, H., Cho, K. C., Kim, J. J., Kim, J. H., Kim, Y. B., & Oh, J. H. (2023). Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model. Journal of NeuroInterventional Surgery, 15(2), 200–204.

    Google Scholar 

  30. Meng, C., Yang, D., & Chen, D. (2021). Cerebral aneurysm image segmentation based on multi-modal convolutional neural network. Computer Methods and Programs in Biomedicine, 208, 106285.

    Google Scholar 

  31. Ahn, J. H., Kim, H. C., Rhim, J. K., Park, J. J., Sigmund, D., Park, M. C., Jeong, J. H., & Jeon, J. P. (2021). Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms. Journal of Personalized Medicine, 11(4), 239.

    Google Scholar 

  32. Claux, F., Baudouin, M., Bogey, C., & Rouchaud, A. (2023). Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. Journal of Neuroradiology, 50(1), 9–15.

    Google Scholar 

  33. Marasini, A., Shrestha, A., Phuyal, S., Zaidat, O. O., & Kalia, J. S. (2022). Role of artificial intelligence in unruptured intracranial aneurysm: An overview. Frontiers in Neurology, 13, 22.

    Google Scholar 

  34. Tanioka, S., Ishida, F., Yamamoto, A., Shimizu, S., Sakaida, H., Toyoda, M., Kashiwagi, N., & Suzuki, H. (2019). Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiology: Artificial Intelligence, 2(1), e190077.

    Google Scholar 

  35. Ou, C., Liu, J., Qian, Y., Chong, W., Zhang, X., Liu, W., Su, H., Zhang, N., Zhang, J., Duan, C. Z., & He, X. (2020). Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data. Frontiers in Neurology, 11, 570181.

    Google Scholar 

  36. Shi, Z., Chen, G. Z., Mao, L., Li, X. L., Zhou, C. S., Xia, S., Zhang, Y. X., Zhang, B., Hu, B., Lu, G. M., & Zhang, L. J. (2021). Machine learning–based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: A multicenter study. American Journal of Neuroradiology, 42(4), 648–654.

    Google Scholar 

  37. https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

  38. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516.

    Google Scholar 

  39. Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep learning applications in medical image analysis. IEEE Access, 6, 9375–9389.

    Google Scholar 

  40. Shaha, M., & Pawar, M. (2018, March). Transfer learning for image classification. 2018 second international conference on electronics, communication and aerospace technology (ICECA) (pp. 656-660). https://doi.org/10.1109/ICECA.8474802

  41. Mohammadi, S., Mohammadi, M., Dehlaghi, V., & Ahmadi, A. (2019). Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and hough circles algorithm. Cardiovascular Engineering and Technology, 10, 490–499.

    Google Scholar 

  42. Hahn, S., Perry, M., Morris, C. S., Wshah, S., & Bertges, D. J. (2020). Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS-Vascular Science, 1, 5–12.

    Google Scholar 

  43. Liang, L., Liu, M., Martin, C., Elefteriades, J. A., & Sun, W. (2017). A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomechanics and Modeling in Mechanobiology, 16, 1519–1533.

    Google Scholar 

  44. López-Linares, K., Aranjuelo, N., Kabongo, L., Maclair, G., Lete, N., Ceresa, M., García-Familiar, A., Macía, I., & Ballester, M. A. G. (2018). Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Medical image analysis, 46, 202–214.

    Google Scholar 

  45. Wang, G. X., Zhang, D., Wang, Z. P., Yang, L. Q., Zhang, L., & Wen, L. (2016). Risk factors for the rupture of bifurcation intracranial aneurysms using CT angiography. Yonsei Medical Journal, 57(5), 1178–1184.

    Google Scholar 

  46. Hwang, B., Kim, J., Lee, S., Kim, E., Kim, J., Jung, Y., & Hwang, H. (2022). Automatic detection and segmentation of thrombi in abdominal aortic aneurysms using a mask region-based convolutional neural network with optimized loss functions. Sensors, 22(10), 3643.

    Google Scholar 

  47. Jordanski, M., Radovic, M., Milosevic, Z., Filipovic, N., & Obradovic, Z. (2016). Machine learning approach for predicting wall shear distribution for abdominal aortic aneurysm and carotid bifurcation models. IEEE Journal of Biomedical and Health Informatics, 22(2), 537–544.

    Google Scholar 

  48. Lareyre, F., Adam, C., Carrier, M., & Raffort, J. (2020). Prediction of abdominal aortic aneurysm growth and risk of rupture in the era of machine learning. Angiology, 71(8), 767–767.

    Google Scholar 

  49. Lareyre, F., Adam, C., Carrier, M., Dommerc, C., Mialhe, C., & Raffort, J. (2019). A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation. Scientific Reports, 9(1), 13750.

    Google Scholar 

  50. Hirata, K., Nakaura, T., Nakagawa, M., Kidoh, M., Oda, S., Utsunomiya, D., & Yamashita, Y. (2020). Machine learning to predict the rapid growth of small abdominal aortic aneurysm. Journal of Computer Assisted Tomography, 44(1), 37–42.

    Google Scholar 

  51. Rigante, L., Boogaarts, H. D., Bartels, R. H., Vart, P., Aquarius, R., Grotenhuis, J. A., Moudrous, W., De Korte, A. M., & de Vries, J. (2021). Factors associated with subsequent subarachnoid hemorrhages in patients with multiple intracranial aneurysms. World neurosurgery, 154, e185–e198.

    Google Scholar 

  52. Xin-Wei et al. (2022). Detection and analysis of cerebral aneurysms based on X-ray rotational angiography—the CADA 2020 challenge European Journal of Radiology

  53. Zhu, G., Luo, X., Yang, T., Cai, L., Yeo, J. H., Yan, G., & Yang, J. (2022). Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size. Frontiers in Physiology, 13, 1–16.

    Google Scholar 

  54. Di Noto, T., Marie, G., Tourbier, S., Alemán-Gómez, Y., Esteban, O., Saliou, G., Cuadra, M. B., Hagmann, P., & Richiardi, J. (2023). Towards automated brain aneurysm detection in TOF-MRA: Open data, weak labels, and anatomical knowledge. Neuroinformatics, 21(1), 21–34.

    Google Scholar 

  55. Yuan, W., Peng, Y., Guo, Y., Ren, Y., & Xue, Q. (2022). DCAU-Net: Dense convolutional attention U-Net for segmentation of intracranial aneurysm images. Visual Computing for Industry, Biomedicine, and Art, 5, 9.

    Google Scholar 

  56. Chen, G., Lu, M., Shi, Z., Xia, S., Ren, Y., Liu, Z., Liu, X., Li, Z., Mao, L., Li, X. L., & Zhang, B. (2020). Development and validation of machine learning prediction model based on computed tomography angiography–derived hemodynamics for rupture status of intracranial aneurysms: A Chinese multicenter study. European radiology, 30, 5170–5182.

    Google Scholar 

  57. Macruz, F. B. C., Lu, C., Strout, J., Takigami, A., Brooks, R., Doyle, S., Yun, M., Buch, V., Hedgire, S., & Ghoshhajra, B. (2022). Quantification of the thoracic aorta and detection of aneurysm at CT: Development and validation of a fully automatic methodology. Radiology: Artificial Intelligence, 4(2), e210076–e210076.

    Google Scholar 

  58. Cavalcanti, A., Shirinzadeh, B., Fukuda, T., & Ikeda, S. (2007). Hardware architecture for nanorobot application in cerebral aneurysm. 2007 7th IEEE conference on nanotechnology (IEEE NANO)

  59. Bhadri, P. R., Kumar, S. A., Salgaonkar, V. A., Beyette, F. R., & Clark, J. F. (2008). Development of an integrated hardware and software platform for the rapid detection of cerebral aneurysm rupture. Analog Integrated Circuits and Signal Processing, 56, 127–134.

    Google Scholar 

  60. Ostberg, N. P., Zafar, M. A., Mukherjee, S. K., Ziganshin, B. A., & Elefteriades, J. A. (2022). A machine learning approach for predicting complications in descending and thoracoabdominal aortic aneurysms. The Journal of Thoracic and Cardiovascular Surgery. https://doi.org/10.1016/j.jtcvs.2021.12.045

    Article  Google Scholar 

  61. Toth, G., & Cerejo, R. (2018). Intracranial aneurysms: Review of current science and management. Vascular Medicine, 23(3), 276–288.

    Google Scholar 

  62. Liu, J., Chen, Y., Lan, L., Lin, B., Chen, W., Wang, M., & Duan, Y. (2018). Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. European radiology, 28, 3268–3275.

    Google Scholar 

  63. Zhang, X. J., Gao, B. L., Hao, W. L., Wu, S. S., & Zhang, D. H. (2018). Presence of anterior communicating artery aneurysm is associated with age, bifurcation angle, and vessel diameter. Stroke, 49(2), 341–347.

    Google Scholar 

  64. Lee, R., Bellamkonda, K., Jones, A., Killough, N., Woodgate, F., Williams, M., Cassimjee, I., Handa, A., Antonopoulos, A., Antoniades, C., & Channon, K. M. (2017). Flow mediated dilatation and progression of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery, 53(6), 820–829.

    Google Scholar 

  65. Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrices for data classification evaluations”. International Journal of Data Mining and Knowledge Management Process, 5(2), 1–11. https://doi.org/10.5121/ijdkp.2015.5201

    Article  Google Scholar 

Download references

Funding

There was no financial support received from any organization for carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

RAS, NP—drafting the manuscript, KS—Supervision, SM, RL—Assisting in drafting the manuscript, SS—project administration.

Corresponding author

Correspondence to Suresh Muthusamy.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

This material is the authors' own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere. The paper reflects the authors' own research and analysis in a truthful and complete manner.

Consent to Participate

I have been informed of the risks and benefits involved, and all my questions have been answered to my satisfaction. Furthermore, I have been assured that any future questions I may have will also be answered by a member of the research team. I voluntarily agree to take part in this study.

Consent to Publish

Individuals may consent to participate in a study, but object to having their data published in a journal article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinnaswamy, R.A., Palanisamy, N., Subramaniam, K. et al. An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms. Wireless Pers Commun 131, 2055–2080 (2023). https://doi.org/10.1007/s11277-023-10532-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10532-y

Keywords

Navigation