Skip to main content
Log in

Enhanced Wideband Spectrum Sensing Algorithm for Analysis of GSM Band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Dynamic variations in noise level and degradation of detection performance at low SNR are the main obstacles in sensing a wideband spectrum. The techniques based on energy detection estimate the energy of the sensed signal and compare it with a fixed predefined threshold. Such a general approach lacks adequate reliability and may cause inaccurate detection in sensing a wideband spectrum. This paper proposes an ‘Enhanced Wideband Spectrum Sensing Algorithm using Gradient and Double Threshold’ that aims at improving the detection performance in circumstances fraught with variations in noise level as well as low SNR. First, wideband sensing of GSM band is performed to determine spectrum occupancy and vacancy, by using the first algorithm. The same band is then scanned using the second algorithm. Experimental results obtained from the hardware platform are in favor of the second algorithm and prove that this proposed algorithm delivers improved detection performance in the presence of variations in noise level and low SNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication, 6(4), 13–18.

    Article  Google Scholar 

  2. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Survey Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  3. F. Weidling, D. Datla, V. Petty, P. Krishnan, and G. J. Minden. (2005). A framework for RF spectrum measurements and analysis. In Proceedings IEEE International Symposium New Frontiers Dynamics Spectrum Access Network, Baltimore, MD, USA, pp. 573–576. https://ieeexplore.ieee.org/document/1542672.

  4. Datla, D., Wyglinski, A., & Minden, G. (2009). A spectrum surveying framework for dynamic spectrum access networks. IEEE Transactions on Vehicular Technology, 58(8), 4158–4168.

    Article  Google Scholar 

  5. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal of Selected Areas Commununication, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380

    Article  Google Scholar 

  6. Yilmaz, B., & Erküçük, S. (2013). Detection of interdependent primary systems using wideband cognitive radios. AEU - International Journal of Electronics and Communications, 67(11), 926–936. https://doi.org/10.1016/j.aeue.2013.05.003

    Article  Google Scholar 

  7. Zhang, S., Dong, X., Bao, Z., et al. (2011). Adaptive spectrum sensing algorithm in cognitive ultra-wideband systems. Wireless Personal Communications, 68, 789. https://doi.org/10.1007/s11277-011-0483-4

    Article  Google Scholar 

  8. S. D. Borde, K. R. Joshi. (2011). Signal processing techniques for spectrum opportunities and interference detection in Cognitive Radio networks. In proceedings of IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2011), pp. 241–246. doi: https://doi.org/10.1049/cp.2011.0883https://ieeexplore.ieee.org/document/6194840.

  9. Pan, L., Xiao, S., & Yuan, X. (2015). Wideband power spectrum sensing for cognitive radios based on sub-nyquist sampling. Wireless Personal Communications, 84, 919. https://doi.org/10.1007/s11277-015-2668-8

    Article  Google Scholar 

  10. JaewooSo, T. (2016). Limited reporting-based cooperative spectrum sensing for multiband cognitive radio networks. AEU - International Journal of Electronics and Communications, 70(4), 386–397.

    Article  Google Scholar 

  11. Farhang-Boroujeny, B. (2008). Filter bank spectrum sensing for cognitive radios. IEEE Transactions on Signal Processing, 56(5), 1801–1811. https://doi.org/10.1109/TSP.2007.911490

    Article  MathSciNet  MATH  Google Scholar 

  12. Quan, Z., Cui, S., Sayed, A., & Poor, H. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140. https://doi.org/10.1109/TSP.2008.2008540

    Article  MathSciNet  MATH  Google Scholar 

  13. Narieda, S., & Hada, T. (2017). Signal cyclostationarity detection based spectrum sensing using simple diversity combining technique and its implementation. Wireless Personal Communications, 96, 909. https://doi.org/10.1007/s11277-017-4210-7

    Article  Google Scholar 

  14. Qing, H., Li, H., Chu, N., Liu, G., & Liu, Y. (2017). Multistage Wiener filter aided MDL approach for wideband spectrum sensing in cognitive radio networks. AEU – International Journal of Electronics and Communication., 73, 165–172. https://doi.org/10.1016/j.aeue.2017.01.012

    Article  Google Scholar 

  15. Ren, X., & Chen, C. (2016). Spectrum sensing algorithm based on sample variance in multiantenna cognitive radio systems. AEU International Journal of Electronics and Communication, 70(12), 1601–1609. https://doi.org/10.1016/j.aeue.2016.09.013

    Article  Google Scholar 

  16. Mariani, A., Giorgetti, A., & Chiani, M. (2015). Wideband spectrum sensing by model order selection. IEEE Transactions on Wireless Communications, 14(12), 6710–6721. https://doi.org/10.1109/TWC.2015.2458320

    Article  Google Scholar 

  17. Salahdine, F., Kaabouch, N., & El Ghazi, H. (2016). A survey on compressive sensing techniques for cognitive radio networks. Physical Communication, 20, 61–73. https://doi.org/10.1016/j.phycom.2016.05.002

    Article  Google Scholar 

  18. Sharma, S. K., Lagunas, E., Chatzinotas, S., & Ottersten, B. (2016). Application of compressive sensing in cognitive radio communications: A survey. IEEE Communication Survey Tutorials, 18(3), 1838–1860. https://doi.org/10.1109/COMST.2016.2524443

    Article  Google Scholar 

  19. Hosseini, H., Anpalagan, A., & Raahemifar, K. (2017). Compressed spectrum sensing for wavelet based cognitive heterogeneous network over multipath fading. Wireless Personal Communications, 96, 3947. https://doi.org/10.1007/s11277-017-4360-7

    Article  Google Scholar 

  20. Blaschke V, Renk T, Jondral FK. (2008). A cognitive radio receiver supporting wide-band sensing. In: IEEE international conference on communications; pp. 499–503 doi: https://doi.org/10.1109/ICCW.2008.100.

  21. Lekomtcev D, Marsalek R. (2016). Spectrum sensing under transmitter front-end constraints. In: International conference on systems, signals and image processing (IWSSIP) IEEE; pp. 1–4. Doi: https://doi.org/10.1109/IWSSIP.2016.7502758.

  22. Tian Z, Giannakis GB. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In: 1st International conference on cognitive radio oriented wireless networks and communications (CROWNCOM 2006); pp. 1–5. Doi: https://doi.org/10.1109/CROWNCOM.2006.363459.

  23. Wang, N., Gao, Y., & Zhang, X. (2013). Adaptive spectrum sensing algorithm under different primary user utilizations. IEEE Communications Letters, 17(9), 1838–1841.

    Article  Google Scholar 

  24. Joshi, D., Popescu, D., & Dobre, O. (2011). Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 15(1), 19–21.

    Article  Google Scholar 

  25. J. Vartiainen, H. Saarnisaari, J. Lehtomaki, and M. Juntti (2006). A Blind signal localization and SNR estimation method. In Proc. Mil. Commun. Conf., Washington, DC, USA, pp. 1–7. https://ieeexplore.ieee.org/document/4086730.

  26. Saarnisaari, H., Henttu, P., & Juntti, M. (2005). Iterative multidimensional impulse detectors for communications based on the classical diagnostic methods. IEEE Transactions on Commununication, 53(3), 395–398.

    Article  Google Scholar 

  27. Sun, H., Nallanathan, A., Wang, C., & Chen, Y. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wireless Communications, 20(2), 74–81. https://doi.org/10.1109/MWC.2013.6507397

    Article  Google Scholar 

  28. D. B. Pandarkar, S.D. Borde, K. R. Joshi. (2017). Wideband Spectrum Analysis of GSM Band Using NIUSRP 2920. In International Journal of Current Engineering and Scientific Research (IJCESR), 4(7). http://troindia.in/journal/ijcesr/vol4iss7/6=9.pdf

Download references

Funding

The research work presented here is not funded by any agency.

Author information

Authors and Affiliations

Authors

Contributions

The main contribution of this paper is the development of an Enhanced Wideband Spectrum Sensing algorithm using gradient and double threshold technique. The proposed algorithm is implemented on NI Universal Software Radio peripheral (USRP 2920), an SDR based hardware platform under the varying noise level conditions. The primary focus of this work is to do spectrum analysis of GSM band for measuring the spectrum occupancy and comparison of the proposed algorithm with the conventional technique.

Corresponding author

Correspondence to Sheetal D. Borde.

Ethics declarations

Data availability

All the data and results related to the presented research work is available with authors.

Code availability

The LabVIEW based code of the proposed algorithm in the paper is developed by authors and is available with them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borde, S.D., Joshi, K.R. Enhanced Wideband Spectrum Sensing Algorithm for Analysis of GSM Band. Wireless Pers Commun 121, 2145–2158 (2021). https://doi.org/10.1007/s11277-021-08814-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08814-4

Keywords

Navigation