Skip to main content
Log in

Detailed Analysis of Water Vapor with All Isotopologues, Air Gas Mixtures and Air Molecules at Terahertz Range

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The scarcity of radio spectrum led regulators to consider new frequency bands including Terahertz frequencies between 0.275 and 1 THz, which is previously reserved only for passive services such as satellite telemetry and radio astronomy. One of the major advantages of Terahertz bands is the available bandwidth. For example, future generation cellular networks would be able support extreme throughputs via Terahertz backhaul links. But the medium that the electromagnetic waves propagate need to be analyzed by this way theoretical results will turn to practical and commercially attractive results. This work will give the channel characteristics of detailed analyzes of CO2, H2O, O2, USA model (high latitude, winter)—USA model (tropics) between 0.275 and 10 THz range. The developed model in this paper evaluates the total absorption loss, path loss, SNR and capacity properties. The water vapor–H2O (which is the biggest enemy of high frequencies) with all isotopes is analyzed in this paper. This paper also presents the theoretical estimations of absorption properties of CO2, H2O, O2, USA model (high latitude, winter)—USA model (tropics) at the THz frequency band from 0.275 to 10 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Studies towards an identification for use by administrations for land-mobile and fixed services applications operating in the frequency range 275–450 GHz. Resolution 767 COM6/14, ITU-R WRC-19 Agenda Item 1.15.

  2. Consideration of the use of the frequencies, between 275 and 3000 GHz. Resolution 950, ITU-R WRC-12 Agenda Item 1.6 - to review No. 5.565 of the Radio Regulations in order to update the spectrum use by the passive services between 275 GHz and 3 000 GHz, in accordance with Resolution 950 (Rev.WRC 07)..

  3. Murray, N. (2016). Exploiting terahertz frequencies—Why 450 GHZ, IET.

  4. Thomas, S., Andrzej, W., Stefan, P., Michael, G., & Ralf-Peter, B. (2012). Link budget analysis for terahertz fixed wireless links. IEEE Transactions on Terahertz Science and Technology, 2(2), 250–256.

    Article  Google Scholar 

  5. Corsi, C., & Sizov, F. (Eds.). (2014). THz and security applications. In Proceedings of NATO science for peace and security series-B-physics and biophysics. ISSN 1874-6500. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-8828-1-6.

  6. Nishizawa, J. I., Suto, K., Sasaki, T., Tanabe, T., & Kimura, T. (2003). Spectral measurement of terahertz vibrations of biomolecules using a GaP terahertz-wave generator with automatic scanning control. Journal of Physics D: Applied Physics, 36, 2958–2961.

    Article  Google Scholar 

  7. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  8. Vaughan-Nichols, S. J. ( 2010). Gigabit Wi-Fi is on its way. IEEE Computer, 43(11), 11–14.

    Article  Google Scholar 

  9. Tuncer, B., Chin-Sean, S., Zhou, L., Junyi, W., Azizur, R. M., Hiroshi, H., et al. (2011). IEEE 802.15. 3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Communications Magazine, 49(7), 114–121.

    Article  Google Scholar 

  10. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  11. Afsharinejad, A., et al. (2016). Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet of Things Journal, 3(1), 59–69.

    Article  Google Scholar 

  12. Nie, S., & Akyildiz, I. F. (2017). Three-dimensional dynamic channel modeling and tracking for terahertz band indoor communications. In 2017 IEEE 28th annual international symposium personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5).

  13. Yilmaz, T., & Akan, O. B. (2016). On the 5G wireless communications at the low terahertz band. arXiv preprint arXiv:1605.02606.

  14. Petrov, V., Pyattaev, A., Moltchanov, D., & Koucheryavy, Y. (2016). Terahertz band communications: Applications, research challenges, and standardization activities. In 2016 8th international congress on ultra modern telecommunications and control systems and workshops (ICUMT) (pp. 183–190).

  15. Kürner, T., & Priebe, S. (2014). Towards THz communications-status in research, standardization and regulation. Journal of Infrared, Millimeter, and Terahertz Waves, 35(1), 53–62.

    Article  Google Scholar 

  16. Kürner, T. (2012). Towards future THz communications systems. Terahertz Science and Technology, 5–1, 11–17.

    Google Scholar 

  17. Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.

    Article  Google Scholar 

  18. Suen, J. Y., Fang, M. T., & Lubin, P. M. (2014). Global distribution of water vapor and cloud cover—Sites for high-performance THz applications. IEEE Transactions on Terahertz Science and Technology, 4(1), 86–100.

    Article  Google Scholar 

  19. Podobedov, V. B., Plusquellic, D. F., & Fraser, G. T. (2005). Investigation of the water-vapor continuum in the THz region using a multipass cell. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(3), 287–295.

    Article  Google Scholar 

  20. Yang, Y., Mandehgar, M., & Grischkowsky, D. R. (2012). Understanding THz pulse propagation in the atmosphere. IEEE Transactions on Terahertz Science and Technology, 2(4), 406–415.

    Article  Google Scholar 

  21. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: Next frontier forwireless communications. Physical Communication, 12, 16–32.

    Article  Google Scholar 

  22. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications., 21(4), 130–135.

    Article  Google Scholar 

  23. Akkas, M. A. (2018). Study of absorption-defined transmission windows in the terahertz band. Ad Hoc Networks, 74, 30–33.

    Article  Google Scholar 

  24. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

    Article  Google Scholar 

  25. Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  26. Couch, I. I., & Leon, W. (1994). Modern communication systems: Principles and applications. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  27. Goody, R. M., & Yung, Y. L. (1989). Atmospheric radiation: Theoretical basis (2nd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  28. https://hitran.iao.ru/.

  29. Swinehart, D. F. (1962). The Beer–Lambert law. Journal of Chemical Education, 39(7), 333.

    Article  Google Scholar 

  30. Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk, M., Brown, L. R., et al. (2005). The HITRAN2004 molecular spectroscopic database. Journal of Quantitative spectroscopy and Radiative Transfer, 96, 139–204.

    Article  Google Scholar 

  31. Rothman, L. S., Gordon, I. E., Barber, R. J., Dothe, H., Gamache, R. R., Goldman, A., et al. (2010). HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(15), 2139–2150.

    Article  Google Scholar 

  32. Akkaş, M. A. (2019). Terahertz wireless data communication. Wireless Networks, 25(1), 145–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Alper Akkaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaş, M.A. Detailed Analysis of Water Vapor with All Isotopologues, Air Gas Mixtures and Air Molecules at Terahertz Range. Wireless Pers Commun 114, 1191–1205 (2020). https://doi.org/10.1007/s11277-020-07415-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07415-x

Keywords

Navigation