Skip to main content

Advertisement

Log in

Design and Beamforming Performance of the Compact ESPAR Antenna for the Beam Space MIMO System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple-input multiple-output (MIMO) system is essential to wireless and mobile communication for the higher channel capacity. However, this MIMO system requires many active RF (radio frequency) stages, and is very difficult to be used in mobile devices. It produces the high energy consumption at RF stage as well as the high hardware complexity. Especially, it will be more serious in the massive MIMO system that is strongly considered as an enabling technology for the 5G mobile communication system. In order to solve this problem, beam-space MIMO (BS-MIMO) systems were proposed using the electronically steerable parasitic array radiator (ESPAR) antenna, which work as the MIMO system using single RF stage with many passive parasitic elements. However, there are some limits in this ESPAR based BS-MIMO system because of this many passive parasitic elements. The conventional BS-MIMO system basically uses two parasitic elements for one dimension of MIMO. So, in this paper we like to propose a design method for reducing the passive elements number in this BS-MIMO system. In the proposed system, we cut down the number of the parasitic elements into half. So, the proposed BS-MIMO system uses one parasitic element for one dimension of MIMO. To design 8 × 8 MIMO system, only eight elements of parasitic elements are needed instead of 16 elements in conventional design. Since this proposed ESPAR based BS-MIMO system requires only the half number of parasitic elements, we can design more compact ESPAR antenna design. Also, we can easily increase the MIMO dimension with compact size by this proposed ESPAR antenna. Simulation results can confirm that the proposed ESPAR BS-MIMO system with half number of elements keeps the very similar performance of the conventional system and acceptable beamforming performance as well. This proposed system could be very useful for the massive MIMO system design for the 5G mobile communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cimini, L. J. (1985). Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, 33(7), 665–675.

    Article  Google Scholar 

  2. Cheong, Y. W., Cheng, R. S., Lataief, K. B., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.

    Article  Google Scholar 

  3. Bolcskei, H., Gesbert, D., & Paulraj, A. J. (2002). On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications, 50(2), 225–234.

    Article  Google Scholar 

  4. Lizhong, Z., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  MATH  Google Scholar 

  5. Attar, A., Holland, O., Nakhai, M. R., & Aghvami, A. H. (2008). Interference-limited resource allocation for cognitive radio in orthogonal frequency-division multiplexing networks. IET Communications, 2(6), 806–814.

    Article  Google Scholar 

  6. Waldschmidt, C., Schulteis, S., & Wiesbeck, W. (2004). Complete RF system model for analysis of compact MIMO arrays. IEEE Transactions on Vehicular Technology, 53(3), 579–586.

    Article  Google Scholar 

  7. Karaboikis, M., Soras, C., Tsachtsiris, G., & Makios, V. (2004). Compact dual-printed inverted-F antenna diversity systems for portable wireless devices. IEEE Antennas and Wireless Propagation Letters, 3(1), 9–14.

    Article  Google Scholar 

  8. Sharawi, M. S., Iqbal, S. S., & Faouri, Y. S. (2011). An 800 MHz 2 × 1 compact MIMO antenna system for LTE handsets. IEEE Transactions on Antennas and Propagation, 59(8), 3128–3131.

    Article  Google Scholar 

  9. Browne, D. W., Manteghi, M., Fitz, M. P., & Rahmat-Samii, Y. (2006). Experiments with compact antenna arrays for MIMO radio communications. IEEE Transactions on Antennas and Propagation, 54(11), 3239–3250.

    Article  Google Scholar 

  10. Getu, B. N., & Andersen, J. B. (2005). The MIMO cube: a compact MIMO antenna. IEEE Transactions on Wireless Communications, 4(3), 1136–1141.

    Article  Google Scholar 

  11. Kruesi, C. M., Vyas, R. J., & Tentzeris, M. M. (2009). Design and development of a novel 3-D cubic antenna for wireless sensor networks (WSNs) and RFID applications. IEEE Transactions on Antennas and Propagation, 57(10), 3293–3299.

    Article  Google Scholar 

  12. Sarrazin, J., Mahe, Y., Avrillon, S., & Toutain, S. (2009). Pattern reconfigurable cubic antenna. IEEE Transactions on Antennas and Propagation, 57(2), 310–317.

    Article  Google Scholar 

  13. Kalis, A., Kanatas, A. G., & Papadias, C. B. (2008). A novel approach to MIMO transmission using a single RF front end. IEEE Journal on Selected Areas in Communications, 26(6), 972–980.

    Article  Google Scholar 

  14. Alrabadi, O. N., Papadias, C. B., Kalis, A., & Prasad, R. (2009). A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes. IEEE Transactions on Wireless Communications, 8(10), 5133–5142.

    Article  Google Scholar 

  15. Barousis, V., & Kanatas, A. G. (2011). Aerial degree of freedom of parasitic array for single RF front-end MIMO transceivers. Progress in Electromagnetics Research B, 35, 287–306.

    Article  Google Scholar 

  16. Schlub, R., Junwei, L., & Ohira, T. (2003). Seven-element ground skirt monopole ESPAR antenna design from a genetic algorithm and the finite element method. IEEE Transactions on Antennas and Propagation, 51(11), 3033–3039.

    Article  Google Scholar 

  17. Chen, S., Hirata, A., Ohira, T., & Karmakar, N. C. (2004). Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment. IEEE Transactions on Antennas and Propagation, 52(7), 1819–1832.

    Article  Google Scholar 

  18. Kawakami, H., & Ohira, T. (2005). Electrically steerable passive array radiator (ESPAR) antennas. IEEE Antennas and Propagation Magazine, 47(2), 43–50.

    Article  Google Scholar 

  19. Vasileiou, P. N., Maliatsos, K., Thomatos, E. D., & Kanatas, A. G. (2013). Reconfigurable orthonormal basis patterns using ESPAR antennas. IEEE Antennas and Wireless Propagation Letters, 12, 448–451.

    Article  Google Scholar 

  20. Alrabadi, O. N., Perruisseau-Carrier, J., & Kalis, A. (2012). MIMO transmission using a single RF Source: Theory and antenna design. IEEE Transactions on Antennas Propagation, 60(2), 654–664.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2013R1A2A2A01005849), and this work was supported by the ICT R&D program of MSIP/IITP. (14-000-04-001, Development of compact MIMO antennas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Gyoon Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, HG., An, C. & Lee, S.H. Design and Beamforming Performance of the Compact ESPAR Antenna for the Beam Space MIMO System. Wireless Pers Commun 91, 829–846 (2016). https://doi.org/10.1007/s11277-016-3499-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3499-y

Keywords

Navigation