Skip to main content
Log in

Optimal sensor placement for source localization based on RSSD

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Source localization based on the received signal strength (RSS) has received great interest due to its low cost and simple implementation. In this paper we consider the source localization problem based on the received signal strength difference (RSSD) with unknown transmitted power of the source using spatially separated sensors. It is well- known that the relative sensor-source geometry (SSG) plays a significant role in localization performance. For this issue, the fisher information matrix (FIM) which inherently is a function of relative SSG is derived. Then for different scenarios the SSG based on the maximization of determinant of FIM is investigated to obtain the optimal sensor placement. Finally, computer simulations are used to study the performance of various sensor placements. Both theoretical analysis and simulation results reveal the ability of the proposed sensor- source geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. We have to mention that for \(N \geqslant 6\) with equal sensor ranges, the optimal geometry is not unique and equiangular sensor separation is a special case of infinitely many optimal geometries.

  2. Although some places in the Fig. 9b have better performance respect to the corresponding places in Fig. 9a but in average the sensor configuration in Fig. 9a gives a better performance for all region.

References

  1. Wang, Y., & Ho, K. C. (2015). An symptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Transactions on Wireless Communnications, 14(12), 6524–6535.

    Article  Google Scholar 

  2. Miao, Q., & Huang, B. (2018). On the optimal anchor placement in single-hop sensor localization. Wireless Networks, 24(5), 1609–1620.

    Article  Google Scholar 

  3. Lohrasbipeydeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letter, 3(4), 433–436.

    Article  Google Scholar 

  4. Uluskan, S., & Filik, T. (2019). A geometrical closed form solution for RSS based far-field localization: Direction of Exponent Uncertainty. Wireless Networks, 25(1), 215–227.

    Article  Google Scholar 

  5. Jin, R., Che, Z., Xu, H., Wang, Z., & Wang, L. (2015). An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wireless Networks., 21(8), 2561–2569.

    Article  Google Scholar 

  6. Liu, D., Lee, M., Pun, C., & Liu H (2013) Analysis of wireless localization in nonline-of-sight conditions. IEEE Transactions on Vehicular Technology, 62(4), 1484-1492. Networking Conference, WCNC, 1–6.

  7. Catovic, A., & Sahinoglu, Z. (2004). The cramer-rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. IEEE Communications Letters, 8(10), 626–628.

    Article  Google Scholar 

  8. Park, C. H., & Chang, J. H. (2017). TOA source localization and DOA estimation algorithms using prior distribution for calibrated source. Digital Signal Processing, 71, 61–68.

    Article  MathSciNet  Google Scholar 

  9. Wang, J., Chen, J., & Cabric, D. (2013). Cramer-rao bounds for joint RSS/DoA-based primary-user localization in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(3), 1363–1375.

    Article  Google Scholar 

  10. Ma, W. K., Vo, B. N., Singh, S. S., & Baddeley, A. (2006). Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach. IEEE Transactions on Signal Processing, 54(9), 3291–3303.

    Article  Google Scholar 

  11. Meesookho, C., Mitra, U., & Narayanan, S. (2008). On energy-based acoustic source localization for sensor networks. IEEE Transactions on Signal Processing, 56(1), 365–377.

    Article  MathSciNet  Google Scholar 

  12. Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and Synthesis in Radio Astronomy. New York: Wiley.

    Google Scholar 

  13. Biguesh, M. (2016). Bearing estimation using time delays: optimum sensor arrangement and an efficient estimator. IEEE Sensor Journal, 16(18), 6961–6965.

    Article  Google Scholar 

  14. Shen, J., Molisch, A. F., & Salmi, J. (2012). Accurate passive location estimation using TOA measurements. IEEE Transactions on Wireless Communications, 11(6), 2182–2192.

    Article  Google Scholar 

  15. Wu, N., Yuan, W., Wang, H., & Kuang, J. (2016). TOA-based passive localization of multiple targets with inaccurate receivers based on belief propagation on factor graph. Digital Signal Processing, 49, 14–23.

    Article  Google Scholar 

  16. Hurtado, M., & Nehorai, A. (2007). Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Transactions on Aerospace and Electronic Systems, 43(2), 780–788.

    Article  Google Scholar 

  17. Jean, O., & Weiss, A. J. (2014). Geolocation by direction of arrival using arrays with unknown orientation. IEEE Transactions on Signal Processing, 62(12), 3135–3142.

    Article  MathSciNet  Google Scholar 

  18. Blatt, D., & Hero, A. O. (2006). Energy-based sensor network source localization via projection onto convex sets. IEEE Transactions on Signal Processing, 54(9), 3614–3619.

    Article  Google Scholar 

  19. Klukas, R., & Lachapelle G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. IEEE International Conference on Communications, (ICASSP 03), vol. 2, pp. 987–991.

  20. Taponecco, L., Damico, A. A., & Mengali, U. (2011). Joint TOA and AOA estimation for UWB localization applications. IEEE Transactions on Wireless Communications, 10(7), 2207–2217.

    Article  Google Scholar 

  21. Biguesh, M., & Gazor, S. (2009). On proper antenna pattern for a simple source detection and localization system. IEEE Transactions on Antennas and Propagation, 57(4), 1073–1080.

    Article  Google Scholar 

  22. Liu, B. H., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on vehicular Technology, 55(2), 499–509.

    Article  Google Scholar 

  23. Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & Odea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.

    Article  Google Scholar 

  24. Cheung, K. W., So, H. C., Ma, W.-K., & Chan, Y. T. (2003). Received signal strength based mobile positioning via constrained weighted least squares, IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 03), pp. 137–140.

  25. Wang, S., & Inkol, R (2011). A near-optimal least squares solution to received signal strength difference based geolocation. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP 11), pp. 2600–2603.

  26. Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1(5), 536–539.

    Article  Google Scholar 

  27. Doganay, K., & Hmam, H. (2008). Optimal angular sensor separation for AOA localization. Signal Processing, 88(5), 1248–1260.

    Article  Google Scholar 

  28. Herath., S. C. K, & Pathirana, P. N. (2010). Optimal sensor separation for AoA based localization via linear sensor array. In International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 187–192.

  29. Meng, W., Xie, L., & Xiao, W. (2016). Optimal TDOA sensor-pair placement with uncertainty in source location. IEEE Transactions on Vehicular Technology, 65(11), 9260–9271.

    Article  Google Scholar 

  30. Lui, K. W. K., & So, H. C. (2009). A study of two-dimensional sensor placement using time-difference-of-arrival measurements. Digital Signal Processesing, 19(4), 650–659.

    Article  Google Scholar 

  31. Bishop, A. N., & Jensfelt, P. (2009). An optimality analysis of sensor-target geometries for signal strength based localization. International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 1, 127–132.

    Google Scholar 

  32. Meng, W., Xie, L., & Xiao, W. (2013). Optimality analysis of sensor-source geometries in heterogeneous sensor networks. IEEE Transactions on Wireless Communications, 12(4), 1958–1967.

    Article  Google Scholar 

  33. Rappaport, T. S. (1999). Wireless Communications: Principles and Practice. Englewood Cliffs, NJ, USA: Prentice-Hall.

    MATH  Google Scholar 

  34. Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  35. Golub, G. H., & van Loan, C. F. (1996). Matrix Computations. Baltimore, MD: Johns Hopkins Univ. Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MasoudReza Aghabozorgi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Using the matrix inversion lemma [35]

$$\begin{aligned} {\left( {{\mathbf {A}} + {\mathbf {B}\mathbf {C}\mathbf {D}}} \right) ^{ - 1}} = {{\mathbf {A}}^{ - 1}}{{ - }}{{\mathbf {A}}^{ - 1}}{\mathbf {B}}{\left( {{{\mathbf {C}}^{ - 1}}{{ + \mathbf {D}}}{{\mathbf {A}}^{ - 1}}{\mathbf {B}}} \right) ^{ - 1}}{\mathbf {D}}{{\mathbf {A}}^{ - 1}}, \end{aligned}$$
(34)

where \({\mathbf {A}} = {\text{diag}}\left[ {\sigma _1^2,\,...,\,\sigma _{N - 1}^2} \right] ,\,{\mathbf {B}} = {\left[ {\begin{array}{*{20}{c}} 1&{...}&1 \end{array}} \right] ^T},\,\,{\mathbf {C}} = \sigma _N^2,\,\,{\text{and}}\,{\mathbf {D}} = {{\mathbf {B}}^T}\) Hence the inverse of \({\varvec{\varSigma }}\) in Eq (8) can be written as

$$\begin{aligned} {{{{\varvec{\varSigma }}}}^{ - 1}} = {{\mathbf {A}}^{ - 1}} - \alpha \,{\mathbf {s}}\,{{\mathbf {s}}^T}, \end{aligned}$$
(35)

where \(\alpha = \left( \sum _{i=1}^N {\frac{1}{\sigma _i^2}} \right) ^{-1}\) and \({\mathbf {s}} = {\left[ {\begin{array}{*{20}{c}} \frac{1}{\sigma _1^2}&{...}&\frac{1}{\sigma _{N-1}^2}\end{array}} \right] ^T}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, A., Aghabozorgi, M. & Biguesh, M. Optimal sensor placement for source localization based on RSSD. Wireless Netw 26, 5151–5162 (2020). https://doi.org/10.1007/s11276-020-02380-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02380-6

Keywords

Navigation