Skip to main content
Log in

Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Essential oils (EOs) were steam-extracted from the needles and twigs of balsam fir, black spruce, white spruce, tamarack, jack pine and eastern white cedar that remained after logging in eastern Canada. These EOs, similarly to that from Labrador tea and other commercial EOs from Chinese cinnamon, clove and lemon eucalyptus, exhibited many common constituent compounds (mainly α-pinene, β-pinene, limonene and bornyl acetate) making up 91 % of each oil based on gas chromatography–mass spectrometry analysis. All of these oils exhibited antibacterial properties, especially when examined in closed tube assay compared to the traditional 96-well microliter format. These antimicrobial activities (minimum inhibitory concentration ≥0.2 % w/v), comparable to those of exotic EOs, were shown against common pathogenic bacteria and fungi. The antioxidant potential of the boreal samples was determined by the 1,1-diphenyl-2-picrylhydrazyl radical scavenging (concentration providing 50 % inhibition ≥7 mg/ml) and reducing power methods. Finally, this investigation revealed some boreal EOs to be potential antimicrobial and antioxidant agents that would notably benefit products in the personal hygiene and care industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation, Illinois

    Google Scholar 

  • Beg AZ, Ahmad I (2002) In vitro fungitoxicity of the essential oil of Syzygium aromaticum. World J Microbiol Biotechnol 18:313–315

    Article  CAS  Google Scholar 

  • Belleau F, Collin G (1993) Composition of the essential oil of Ledum groenlandicum. Phytochemistry 33:117–121

    Article  CAS  Google Scholar 

  • Bergfeld WF, Besito DV, Marks JG, Andersen FA (2005) Safety of ingredients used in cosmetics. J Am Acad Dermatol 52:125–132

    Article  Google Scholar 

  • Bondet V, Brand-Williams W, Berset C (1997) Kinetic and mechanisms of antioxidant activity using the DPPH free radical method. LWT-Food Sci Technol 30:609–615

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvellier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Chao S, Young G, Oberg C, Nakaoka K (2008) Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour Fragr J 23:444–449

    Article  CAS  Google Scholar 

  • Chartier C (2009) Épinette rouge, de la tradition à l’utilisation actuelle. Phytother 7:251–254

    Article  Google Scholar 

  • Cosentino S, Tuberoso CIG, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F (1999) In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29:130–135

    Article  CAS  Google Scholar 

  • Craig AM, Karchesy JJ, Blythe LL, Gonzalez-Hernandez M, Swan LR (2004) Toxicity studies on western juniperoil (Juniperus occidentalis) and Port-Orford-cedar oil (Chamaecyparis lawsoniana) extracts utilizing local lymph node and accute dermal irritation assays. Toxicol Lett 154:217–224

    Article  CAS  Google Scholar 

  • Daferera DJ, Ziogas BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot 22:39–44

    Article  CAS  Google Scholar 

  • Dales RE, Burnett R, Zwanenburg H (1991a) Adverse health effects among adults exposed to home dampness and molds. Am Rev Respir Dis 143:505–509

    Article  CAS  Google Scholar 

  • Dales RE, Zwanenburg H, Burnett R, Franklin CA (1991b) Respiratory health effects of home dampness and molds among Canadian children. Am J Epidemiol 134:196–203

    CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  Google Scholar 

  • Eloff JN (1998) Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethnopharmacol 60:1–8

    Article  CAS  Google Scholar 

  • Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352:1436–1444

    Article  CAS  Google Scholar 

  • Gonçalves MJ, Tavares AC, Cavaleiro C, Cruz MT, Lopes MC, Canhoto J, Salgueira L (2012) Composition, antifungal activity and cytotoxicity of the essential oils of Seseli tortuosum L. and Seseli montanum subsp. peixotoanum (Samp.) M. Laínz from Portugal. Ind Crops Prod 39:204–209

    Article  Google Scholar 

  • Hachey JM, Collin GJ, Simard S (1989) Influence of sample preparation on the composition of the essential oil of the needles and twigs of Picea mariana (Mill.) B.S.P. J Wood Chem Technol 9:53–60

    Article  CAS  Google Scholar 

  • Hunt RS, von Rudloff E (1974) Chemosystematic studies in the genus Abies. I. Leaf and twig oil analysis of alpine and balsam firs. Can J Bot 52:477–487

    Article  CAS  Google Scholar 

  • Hussain AI, Anwar F, Shahid M, Ashraf M, Przybylski R (2010) Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J Essent Oil Res 22:78–84

    Article  CAS  Google Scholar 

  • Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essentail oils eradicate Pseudomonas spp. and Saphylococcus aureus biofilms. Appl Environ Microbiol 78:4057–4061

    Article  CAS  Google Scholar 

  • Kéïta SM, Vincent C, Schmidt J-P, Arnason JT (2001) Insecticidal effets of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus [Coleoptera: Bruchidae]. Can J Plant Sci 81:173–177

    Article  Google Scholar 

  • Kramer A, Rudolph P, Kampf G, Pittet D (2002) Limited efficacy of alcohol-based hand gels. Lancet 359:1489–1490

    Article  CAS  Google Scholar 

  • Oh D-H, Marshall DL (1993) Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes. Int J Food Microbiol 20:239–246

    Article  CAS  Google Scholar 

  • Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibitory effects of selected plant essential olis on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes. Food Control 18:414–420

    Article  CAS  Google Scholar 

  • Pichette A, Larouche P-L, Lebrun M, Legault J (2006) Composition and antibacterial activity of Abies balsamea essential oil. Phytother Res 20:371–373

    Article  CAS  Google Scholar 

  • Poaty B, Dumarçay S, Gérardin P, Perrin D (2010) Modification of grape seed and wood tannins to lipophilic antioxidant derivatives. Ind Crops Prod 31:509–515

    Article  CAS  Google Scholar 

  • Rajeswara Rao BR, Kaul PN, Syamasundar KV, Ramesh S (2003) Comparative composition of decanted and recovered essential oils of Eucalyptus citriodora Hook. Flavour Fragr J 18:133–135

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Risi J, Brûlé M (1945) Étude des huiles essentielles tirées des feuilles de quelques conifères du Québec. Can J Res 23:199–207

    Article  Google Scholar 

  • Rotter ML (2001) Arguments for alcoholic hand disinfection. J Hosp Infect 48(Suppl. A):S4–S8

    Article  Google Scholar 

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antibacterials and antimicrobials in foods. Food Chem 91:621–632

    Article  CAS  Google Scholar 

  • Saleh MA, Clark S, Woodard B, Deolu-Sobogun SA (2010) Antioxidant and free radical scavenging activities of essential oils. Eth Dis 20:SI78–SI82

    Google Scholar 

  • Sekine T, Sugano M, Majid A, Fujii Y (2007) Antifungal effects of volatile compounds from black Zira (Bunium persicum) and other spices and herbs. J Chem Ecol 33:2123–2132

    Article  CAS  Google Scholar 

  • Senanayake UM, Wijesekera ROB (2004) Chemistry of Cinnamon and cassia. In: Ravindran PN, Nirmal Babu K, Shylaja M (eds) Cinnamon and cassia: the genus Cinnamomum. CRC Press LLC, Florida, pp 80–120

    Google Scholar 

  • Shapero M, Nelson DA, Labuza TP (1975) Ethanol inhibition of Staphylococcus aureus at limited water activity. J Food Sci 43:1467–1469

    Article  Google Scholar 

  • Shaw AC (1953) The essential oil of Abies balsamea (L.) Mill. Can J Chem 31:193–199

    Article  CAS  Google Scholar 

  • Simard S, Hachey JM, Collin GJ (1988) The variations of essential oil composition during the extraction process. The case of Thuja occidentalis L. and Abies balsamea (L.) Mill. J Wood Chem Technol 8:561–573

    Article  CAS  Google Scholar 

  • Singh HB, Srivastava M, Singh AB, Srivastava AK (1995) Cinnamon bark oil, a potent fungi toxicant against fungi causing respiratory tract mycoses. Allergy 50:995–999

    Article  CAS  Google Scholar 

  • Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2013) Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crops Prod 43:587–595

    Article  CAS  Google Scholar 

  • Thompson DP (1989) Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81:151–153

    Article  CAS  Google Scholar 

  • Tiwari R, Dixit V (1994) Fungitoxic activity of vapours of some higher plants against predominant storage fungi. Natl Acad Sci Lett 17:55–57

    Google Scholar 

  • Tsiri D, Graikou K, Plobacka-Olech L, Krauze-Baranowska M, Spyrolpoulos C, Chinou I (2009) Chemosystematic value of the essential oil composition of Thuja species cultivated in Poland—antimicrobial activity. Molecules 14:4707–4714

    Article  CAS  Google Scholar 

  • Tsukatani Y, Suenaga H, Shiga M, Noguchi K, Ishiyama M, Ezoe T, Matsumoto K (2012) Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. J Microbiol Methods 90:160–166

    Article  CAS  Google Scholar 

  • Vijayan KK, Ajithan Thampuran RV (2004) Pharcology and toxicology of Cinnamon and cassia. In: Ravindran PN, Nirmal Babu K, Shylaja M (eds) Cinnamon and cassia: the genus Cinnamomum. CRC Press LLC, Florida, pp 259–284

    Google Scholar 

  • von Rudloff E (1961) Gas-liquid chromatography of terpenes. Part IV. The analysis of the volatile oil of the leaves of eastern white cedar. Can J Chem 39:1200–1206

    Article  Google Scholar 

  • von Rudloff E (1967) Chemosystematic studies in the genus Picea (Pinaceae): I. Introdution. Can J Bot 45:891–901

    Article  Google Scholar 

  • von Rudloff E (1972) Seasonal variation in the composition of the volatile oil of the leaves, buds, and twigs of white spruce (Picea glauca). Can J Bot 50:1595–1603

    Article  Google Scholar 

  • von Rudloff E, Granat M (1982) Seasonal variation of the terpenes of the leaves, buds, and twigs of balsam fir (Abies balsamea). Can J Bot 60:2682–2685

    Article  Google Scholar 

  • Wang R, Wang R, Yang B (2011) Comparison of volatile compound composition of cinnamon (Cinnamomum cassia Presl) bark prepared by hydrodistillation and headspace solid phase microextraction. J Food Process Eng 34:175–185

    Article  CAS  Google Scholar 

  • Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME (1997) Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis 81:204–210

    Article  CAS  Google Scholar 

  • Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42:629–632

    Article  CAS  Google Scholar 

  • Zaika LL (1987) Spices and herbs: their antimicrobial activity and its determination. J Food Saf 9:97–118

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) for this work. We also thank the Cégep de l’Abitibi-Témiscamingue and Richard Lefèbvre for help and suggestions, Tembec company (Guy St-Germain) and Lake Duparquet Research and Teaching Forest (Claude-Michel Bouchard) for help in the foliage harvesting.

Conflict of interest

No conflict of interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouddah Poaty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poaty, B., Lahlah, J., Porqueres, F. et al. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J Microbiol Biotechnol 31, 907–919 (2015). https://doi.org/10.1007/s11274-015-1845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1845-y

Keywords

Navigation