Skip to main content
Log in

Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the efficacy of antibiotics as well as bacteriophages in treatment of bacterial infections, their role in treatment of biofilm associated infections is still under consideration especially in case of older biofilms. Here, efficacy of bacteriophage alone or in combination with amoxicillin, for eradication of biofilm of Klebsiella pneumoniae B5055 has been assessed. Planktonic cells as well as biofilm of K. pneumoniae B5055 grown in 96-well microtiter plates were exposed to bacteriophage and amoxicillin at various Multiplicity of Infections (MoIs) as well as at three different antibiotic concentrations (512, 256 and 128 μg/ml), respectively. After exposure to 256 μg/ml (MIC) of amoxicillin, bacterial load of planktonic culture as well as 1-day-old biofilm was reduced by a log factor of 4.1 ± 0.31 (P = 0.008) and 1.24 ± 0.27 (P < 0.05), respectively but reduction in the bacterial load of mature biofilm (8-day-old) was insignificant (P = 0.23). When 8-day-old biofilm was exposed to higher antibiotic concentration (512 μg/ml) or phage alone (MoI = 0.01) a log reduction of 2.97 ± 0.11 (P = 0.182) and 3.51 ± 0.19 (P = 0.073), respectively was observed. While on exposing to a combination of both the amoxicillin and phage, a significant reduction (P < 0.01) in bacterial load of the biofilm was seen. Hence, when antibiotic was used in combination with specific bacteriophage a greater destruction of the biofilm structure suggested that the phages could be used successfully along with antibiotic therapy. An added advantage of the combination therapy would be its ability to check formation of resistant mutants that otherwise develop easily upon using phage or antibiotic alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam MH (1959) “Lysogeny” in bacteriophages. Interscience Publishers, Inc., London, pp 365–380

    Google Scholar 

  • Alisky J, Iczkowski K, Rapoport A, Troitsky N (1998) Bacteriophages show promise as antimicrobial agents. J Infect 36:5–15. doi:10.1016/S0163-4453(98)92874-2

    Article  CAS  Google Scholar 

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of Antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824. doi:10.1128/AAC.44.7.1818-1824.2000

    Article  CAS  Google Scholar 

  • Anderl JN, Jeff Z, Frank R, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256. doi:10.1128/AAC.47.4.1251-1256.2003

    Article  CAS  Google Scholar 

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. doi:10.1093/jac/48.2.322

    Article  CAS  Google Scholar 

  • Christensen BE (1985) The role of extracellular polysaccharides in biofilms. J Biotechnol 10:181–202. doi:10.1016/0168-1656(89)90064-3

    Article  Google Scholar 

  • Dickinson M, Bisno AL (1993) Infections associated with prosthetic devices: clinical considerations. Int J Artif Organs 16:749–754

    CAS  Google Scholar 

  • Donlan RM (2001) Biofilms and device-associated infections. www.cdc.gov/ncidod/EiD/vol7no2/donlan.html

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. doi:10.1128/CMR.15.2.167-193.2002

    Article  CAS  Google Scholar 

  • Evans DJ, Allison DG, Brown MRW, Gilbert P (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27:177–184. doi:10.1093/jac/27.2.177

    Article  CAS  Google Scholar 

  • Finelli AC, Gallant V, Jarvi K, Burrows LL (2003) Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacterial 185:2700–2710

    Article  CAS  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. doi:10.1016/j.tim.2004.11.010

    Article  CAS  Google Scholar 

  • Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM (2005) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50:2912–2918. doi:10.1128/AAC.01630-05

    Article  CAS  Google Scholar 

  • Górski A, Weber-Dabrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62:511–519. doi:10.1007/s00018-004-4403-6

    Article  CAS  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998a) Bacteriophage and associated polysaccharide depolymerases—novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590. doi:10.1046/j.1365-2672.1998.853541.x

    Article  CAS  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998b) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047

    Article  CAS  Google Scholar 

  • Jagnow J, Clegg S (2003) Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiol 149:2397–2405. doi:10.1099/mic.0.26434-0

    Article  CAS  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    CAS  Google Scholar 

  • Langstraat J, Bohse M, Clegg S (2001) Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69:5805–5812. doi:10.1128/IAI.69.9.5805-5812.2001

    Article  CAS  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nature 5:48–56

    CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. doi:10.1016/S0966-842X(00)01913-2

    Article  CAS  Google Scholar 

  • Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi:10.1016/j.tim.2005.05.009

    Article  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M7-A5. NCCLS, Villanova

    Google Scholar 

  • Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13

    CAS  Google Scholar 

  • Raad I (1998) Intravascular-catheter-related infections. Lancet 351:893–898. doi:10.1016/S0140-6736(97)10006-X

    Article  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2003) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138. doi:10.1016/S0140-6736(01)05321-1

    Article  Google Scholar 

  • Suci PA, Mittelman MW, Yu FP, Geesey GG (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38:2125–2133

    CAS  Google Scholar 

  • Sulakvelidze A (2005) Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discov Today 12:807–809. doi:10.1016/S1359-6446(05)03441-0

    Article  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  Google Scholar 

  • Sutherland IW, Wilkinson JF (1965) Depolymerases for bacterial EPS obtained from phage-infected bacteria. J Gen Microbiol 39:373–383

    CAS  Google Scholar 

  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132:1297–1304

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Chhibber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedi, M.S., Verma, V. & Chhibber, S. Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol 25, 1145–1151 (2009). https://doi.org/10.1007/s11274-009-9991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9991-8

Keywords

Navigation