Skip to main content

Advertisement

Log in

Periphyton Assemblages as Bioindicators of Mine-Drainage in Unglaciated Western Allegheny Plateau Lotic Systems

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In order to determine the influence of geologic patterns and coal mining on benthic algal assemblages, 56 stream sites throughout the unglaciated Western Allegany Plateau were investigated. These sites were categorized based upon catchment mining/reclamation history. At each site, select environmental parameters such as pH, temperature, dissolved oxygen, specific conductance, metallic salts concentration, turbidity, maximum wetted width, and average thalweg depth were measured. Periphyton from riffle areas and macroscopic algal taxa from a 20 m segment were collected. Relative importance values were developed and calculated for both the periphyton and macroalgal communities. Canonical correspondence analyses of the periphyton and macroalgal data set each showed five major groups of stream reaches that were defined by specific algal taxa and environmental characteristics. Two of the groups were dominated by variables associated with acid mine drainage (AMD) and had taxa known from very acidic waters. One group was entirely composed of sites receiving treated waters from active coal mines. Another group was dominated by sites classified as alkaline mine drainage (AkMD) and the last group was primarily reference sites with a few reclaimed reaches. The AMD impacted groups had a significantly lower species richness and diversity than the other three groups. Species-based models for inferring the level of critical environmental parameters related to mining showed the periphyton-based inference model for pH was highly predictable and may be quite useful for evaluation of coal mine remediation. Other promising periphyton- and macroalgal-based models, yielded poor r2 and root mean square error (RMSE) after cross-validation. Comparison of the relative importance values with more traditional assessments of community structure showed similar results with the diatoms and chlorophytes dominating the periphyton and macroalgae, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous: 1997, Data Logging Colorimeter Handbook, Hach Company, Loveland, Colorado, USA, 203 pp.

    Google Scholar 

  • APHA (American Public Health Association): 1994, Standard Methods for the Examination of Water and Wastewater, 22nd edn., American Public Health Association, Washington, DC, 1220 pp.

    Google Scholar 

  • Arnold, D. E., Bender, P. M., Hale, A. B. and Light, R. W.: 1981, ‘Studies of infertile, acidic Pennsylvania streams and their benthic communities’, in R. Singer (ed.), Effects of Acid Precipitation on Benthos, North American Benthological Society, Springfield, IL, U.S.A., pp. 15–33.

    Google Scholar 

  • Banks, D., Younger, P. L., Arnesen, R -T., Iversen, E. R. and Banks, S. B.: 1997, ‘Mine-water chemistry: The good, the bad and the ugly’, Environ. Geol. 32, 157–174.

    Article  Google Scholar 

  • Barbour, M. G., Burk, J. H. and Pitts, W. D.: 1987, Terrestrial Plant Ecology, 2nd edn., The Benjamin/Cummings Publishing Company, Inc. Menlo Park, CA, U.S.A., 634 pp.

    Google Scholar 

  • Battarbee, R. W.: 1973, ‘A new method for estimating absolute microfossil numbers with special reference to diatoms’, Limnol. Oceanogr. 18, 647–653.

    Google Scholar 

  • Battarbee, R. W., Charles, D. F. and Dixit, S. S.: 1999, ‘Diatoms as indicators of surface water acidity’, in E. F. Stoermer and J.P. Smol (eds.), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, U.K., pp. 85–127.

    Google Scholar 

  • Bell, T. J. and Ungar, I. A.: 1981, ‘Elemental concentration in plant tissue as influenced by low pH soils’, Plant Soil 55, 157–161.

    Google Scholar 

  • Biggs, B. J. F.: 1990, ‘Periphyton communities and their environments in New Zealand Rivers’, New Zeal. J. Mar. Fresh. 24, 367–386.

    Google Scholar 

  • Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. and ter Braak, C. J. F.: 1990, ‘Diatoms and pH reconstruction’, Philos. T. Roy. Soc. B. 327, 263–278.

    Google Scholar 

  • Canfield, D. E. and Hoyer, M. V.: 1988, ‘Influence of nutrient enrichment and light availability on the abundance of aquatic macrophytes in Florida, USA streams’, Can. J. Fish. Aquat. Sci. 45, 1467–1472.

    Google Scholar 

  • Chiras, D. D.: 1988, Environmental Science: A Framework for Decision Making, Benjamin/Cummings Pub. Co., Menlo Park, CA, U.S.A., 531 pp.

    Google Scholar 

  • Curtis, J. T. and McIntosh, R. P.: 1951, ‘An upland forest continuum in the prairie-forest border region of Wisconsin’, Ecology 32, 476–496.

    Google Scholar 

  • Dillard, G. E.: 1989a, Freshwater Algae of the Southeastern United States Part 1: Chlorophyceae: Volvocales, Tetrasporales and Chlorococcales, J. Cramer, Berlin, Germany.

    Google Scholar 

  • Dillard, G. E.: 1989b, Freshwater Algae of the Southeastern United States: Chlorophyceae: Ulotrichales, Microsporales, Cylindrocapsales, Sphaeropleales, Chaetophorales, Cladophorales, Schizogoniales, Siphonales and Oedogoniales, J. Cramer, Berlin, Germany, 248 pp.

    Google Scholar 

  • Dillard, G. E.: 1990, Freshwater Algae of the Southeastern United States: Chlorophyceae: Zygnematales: Zygnemataceae, Mesotaeniaceae and Desmidiaceae, J. Cramer, Berlin, Germany, 276 pp.

    Google Scholar 

  • Dillard, G. E.: 1991a, Freshwater Algae of the Southeastern United States, Part 5 Section 3: Chlorophyceae, Zygnematales, Desmidiaceae, J. Cramer, Berlin, Germany, 310 pp.

    Google Scholar 

  • Dillard, G. E.: 1991b, Freshwater Algae of the Southeastern United States: Chlorophyceae: Zygnematales: Desmidiaceae, J. Cramer, Berlin, Germany, 231 pp.

    Google Scholar 

  • Dillard, G. E.: 1993, Freshwater Algae of the Southeastern United States: Chlorophyceace: Zygnematales: Desmidiaceae, J. Cramer, Berlin, Germany, 166 pp.

    Google Scholar 

  • Dillard, G. E.: 1999, Common Freshwater Algae of the United States: An Illustrated Key to the Genera (Excluding the Diatoms), Gebrüder Borntraeger, Berlin, Germany, 173 pp.

    Google Scholar 

  • Dixit, S. S., Dixit, A. S. and Smol, J. P.: 1991, ‘Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes’, Freshwater Biol. 26, 251–265.

    Google Scholar 

  • Dodd, W. K.: 1991, ‘Micro-environmental characteristics of filamentous algal communities in flowing freshwaters’, Freshwater Biol. 25, 199–209.

    Google Scholar 

  • Dugan, P. R.: 1975, ‘Bacterial ecology of strip mine areas and its relationship to the production of acid mine drainage’, Ohio J. Sci. 74, 265–279.

    Google Scholar 

  • Eberle, M. and Razem, A. C.: 1985, Effects of Surface Coal Mining and Reclamation on Ground Water in Small Water Sheds in the Allegheny Plateau, Ohio, U. S. Geological Survey, Water Resource Investigations Report 85–4205, 13 pp.

  • Elwood, G. W. and Mulholland, P. J.: 1989, ‘Effects of acidic precipitation on stream ecosystem’, in D.C. Adrian and A.H. Johnson (eds.), Acid Precipitation, vol. 2, Springer-Verlag, New York, NY, U.S.A., pp. 83–135.

    Google Scholar 

  • Fenneman, N. M.: 1938, Physiography of Eastern United States, McGraw-Hill Book Co., New York, NY, U.S.A., 714 pp.

    Google Scholar 

  • Gordon, N. D., McMahon, T. A. and Finlayson, B. L.: 1992, Stream Hydrology: An Introduction for Ecologists, Wiley, New York, NY, U.S.A., 526 pp.

    Google Scholar 

  • Gray, N. F.: 1998, ‘Acid mine drainage composition and the implication for its impact on lotic systems’, Water Res. 32, 2122–2134.

    CAS  Google Scholar 

  • Hillebrand, H., Durselen, C., Kirschtel, D., Pollingher, U. and Zohary, T.: 1999, ‘Biovolume calculations for pelagic and benthic microalgae’, J. Phycol. 35, 403–424.

    Article  Google Scholar 

  • Hintze, J. L.: 2000, NCSS 7.0 User’s Manual, Number Cruncher Statististical Systems, Kaysville, UT, U.S.A.

    Google Scholar 

  • Holmes, N. T. H. and Whitton, B. A.: 1981, ‘Phytobenthos of the River Tees and its tributaries’, Freshwater Biol. 11, 139–163.

    Google Scholar 

  • Juggins, S. and ter Braak, C. J. F.: 1992, CALIBRATE – A Program for Species-Environment Calibration by [Weighted-Averaging] Partial Least Squares Regression, Environmental Change Research Center, University College, London, 23 pp.

    Google Scholar 

  • Keating, S. T., Clements, C. M., Ostrowski, D. and Hanlon, T.: 1996, ‘Disinfectant properties of acid mine drainage: Its effects on enteric bacteria in a sewage-contaminated stream’, J. Freshwater Ecol. 11, 271–282.

    CAS  Google Scholar 

  • Kirschtel, D. B.: 1992, ‘The effects of nutrient constraint on the development of a stream periphyton community’, M.S. Thesis, University of Louisville, Louisville Kentucky, U.S.A., 100 pp.

    Google Scholar 

  • Krammer, K. and Lange-Bertalot, H.: 1986, Bacillariophyceae. 1. Teil: Naviculaceae, VEB Gustav Fisher Verlag, Jena, Germany, 876 pp.

    Google Scholar 

  • Krammer, K. and Lange-Bertalot, H.: 1988, Bacillariophyceae. 2. Teil: Epithemiaceae, Bacillariaceae, Surirellaceae, VEB Gustav Fisher Verlag, Jena, Germany, 610 pp.

    Google Scholar 

  • Krammer, K. and Lange-Bertalot, H.: 1991a, Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae, VEB Gustav Fisher Verlag, Jena, Germany, 598 pp.

    Google Scholar 

  • Krammer, K. and Lange-Bertalot, H.: 1991b, Bacillariophyceae. 1. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema, VEB Gustav Fisher Verlag, Jena, Germany, 437 pp.

    Google Scholar 

  • Kuta, F. J. and Richards, C.: 1996, ‘Relating diatom assemblage structure to stream habitat quality’, J. N. Am. Benthol. Soc. 15, 469–480.

    Google Scholar 

  • Leatherman, R. D. and Mitsch, W. J.: 1978, ‘Impact of acid mine drainage on a stream in Pennsylvania’, Environ. Pollut. 17, 53–73.

    Article  Google Scholar 

  • Leland, H. V.: 1995, ‘Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors’, Can. J. Fish. Aquat. Sci. 52, 1108–1129.

    Google Scholar 

  • Leland, H. V. and Porter, S. D.: 2000, ‘Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use’, Freshwater Biol. 44, 279–301.

    Article  Google Scholar 

  • Line, J. M., ter Braak, C. J. F. and Birks, H. J. B.: 1994, ‘WACALIB version 3.3 – a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction’, J. Paleolimnol. 10, 147–152.

    Article  Google Scholar 

  • Lowe, R. L. and Pan, Y.: 1996, ‘Benthic algal communities as biological monitors’, in R.J. Stevenson, M.L. Bothwell and R.L. Lowe (eds.), Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, San Diego, CA, U.S.A., pp. 705–739.

    Google Scholar 

  • Magurran, A. E.: 1988, Ecological Diversity and its Measurement, Princeton University Press, Princeton, NJ, U.S.A., 179 pp.

    Google Scholar 

  • McCune, B. and Mefford, M. J.: 1999, Multivariate Analysis of Ecological Data Version 4.0, MjM Software, Glenden Beach, OR, U.S.A.

    Google Scholar 

  • Mueller-Dombois, D. and Ellenberg, H.: 1974, Aims and Methods of Vegetation Ecology, Wiley-Interscience, New York, NY, U.S.A., 547 pp.

    Google Scholar 

  • Mulholland, P. J., Elwood, J. W., Palumbo, A. V. and Stevenson, R. J.: 1986, ‘Effects of stream acidification on periphyton composition, chlorophyll, and productivity’, Can. J. Fish. Aquat. Sci. 43, 1846–1858.

    CAS  Google Scholar 

  • Muller, P.: 1980, ‘Effect of artificial acidification on the growth of periphyton’, Can. J. Fish. Aquat. Sci. 45, 254–260.

    Google Scholar 

  • Office of Surface Mining: 1995, Appalachian Clean Stream Initiative, Information Bulletin, Alton, IL 1995-618-289.

    Google Scholar 

  • Ohio Department of Natural Resources, Division of Water: 1985, Principal streams and their drainage areas, Columbus, OH, U.S.A.

    Google Scholar 

  • Pan, Y., Stevenson, R. J., Hill, B. H., Herlihy, A. T. and Collins, G. B.: 1996, ‘Using diatoms as indicators of ecological conditions in lotic systems: A regional assessment’, J. N. Am. Benthol. Soc. 15, 481–495.

    Google Scholar 

  • Parent, L., Allard, M., Planas, D. and Moreau, G.: 1986, ‘The effects of short-term and continuous experimental acidification on biomass and productivity of running water periphytic algae’, in B. G. Isom and J.M. Bates (eds.), Impact of Acid Rain and Deposition on Aquatic Biological Systems, American Society for Testing and Materials, Philadelphia, PA, U.S.A., pp. 28–41.

    Google Scholar 

  • Patrick, R. and Reimer, C. W.: 1966, The Diatoms of the United States, Vol. I, Monograph 13, Academy of Natural Sciences of Philadelphia, Philadelphia, PA, U.S.A., 688 pp.

  • Patrick, R. and Reimer, C. W.: 1975, Diatoms of the United States, Vol. II. Part 1. Monograph 13, Academy of Natural Sciences of Philadelphia, Philadelphia, PA, U.S.A., 213 pp.

    Google Scholar 

  • Peacefull, L.: 1996, ‘Climate and weather’, in L. Peacefull (ed.), A Geography of Ohio, The Kent State University Press, Kent, OH, U.S.A., pp. 3–15.

    Google Scholar 

  • Planas, D.: 1996, ‘Acidification effects’, in R. J. Stevenson, M. L. Bothwell and R. L. Lowe (eds.), Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, San Diego, CA, U.S.A., pp. 497–530.

    Google Scholar 

  • Prescott, G. W.: 1962, Algae of the Western Great Lakes Area, W.M.C. Brown Publishers, Dubuque, IA, U.S.A., 977 pp.

    Google Scholar 

  • Reice, S. R.: 1981, ‘Interspecific associations in a woodland stream’, Can. J. Fish. Aquat. Sci. 38, 1271–1280.

    Google Scholar 

  • Riley, J. P.: 1960, ‘The ecology of water areas associated with coal strip-mined lands in Ohio’, Ohio J. Sci. 60, 106–121.

    CAS  Google Scholar 

  • SAS: 1996, SAS/STAT Users Guide, 5th edn., SAS Institute Inc., Cary, NC, U.S.A.

    Google Scholar 

  • Sedam, A. C. and Francy, D. S.: 1993, Geologic Setting and Water Quality of Selected Basins in the Active Coal-Mining Areas of Ohio, 1989-91, with a Summary of Water Quality for 1985, Water Resources Investigation Report 93-4094. US Geological Survey, Washington, DC, 131 pp.

  • Sheath, R. G. and Burkholder, J. M.: 1985, ‘Characteristics of softwater streams in Rhode Island. II. Composition and seasonal dynamics of macroalgal communities’, Hydrobiologia 128, 109– 118.

    Google Scholar 

  • Sheath, R. G. and Cole, K. M.: 1992, ‘Biogeography of stream macroalgae in North America’, J. Phycol. 28, 448–460.

    Article  Google Scholar 

  • Sheath, R. G., Morison, M. O., Korch, J. E., Kaczmarczyk, D. and Cole, K. M.: 1986, ‘Distribution of stream macroalgae in south-central Alaska’, Hydrobiologia 135, 259–269.

    Article  Google Scholar 

  • Skousen, J., Sexstone, A., Garbutt, K. and Sencindiver, J.: 1994, ‘Acid mine drainage treatment with wetlands and anoxic limestone drains’, in D.M. Kent (ed.), Applied Wetland Science and Technology, Lewis Publishers, Boca Raton, FL, U.S.A., pp. 263–282.

    Google Scholar 

  • Smith, R. L. and Smith, T. M.: 1999, Ecology and Field Biology, Benjamin Cummings, New York, NY, U.S.A., 771 pp.

    Google Scholar 

  • Starnes, L. B.: 1985, ‘Aquatic community response to techniques utilized to reclaim eastern US coal surface mine-impacted streams’, in J. A. Gore (ed.), The Restoration of Rivers and Streams: Theories and Experience, Butterworth Publishers, Boston, MA, U.S.A., pp. 193–213.

    Google Scholar 

  • Stevenson, R. J.: 1996, ‘An introduction to algal ecology in freshwater benthic habitats’, in R. J. Stevenson, M. L. Bothwell and R. L. Lowe (eds.) Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, San Diego, CA, U.S.A., pp. 3–30.

    Google Scholar 

  • Stevenson, R. J. and Pan, Y.: 1999, ‘Assessing environmental conditions in rivers and streams with diatoms’, in E.F. Stoermer and J. P. Smol (eds.), The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, New York, NY, U.S.A., pp. 11–40.

    Google Scholar 

  • Stoermer, E. F., Edlund, M. B., Pilskaln, C. H. and Schelske, C. L.: 1995, ‘Siliceous microfossil distribution in the surficial sediments of Lake Baikal’, J. Paleolimnol. 14, 69–82.

    Article  Google Scholar 

  • Stock, M. S. and Ward, A. K.: 1991, ‘Blue-green algal mats in a small stream’, J. Phycol. 27, 692–698.

    Article  Google Scholar 

  • Stokes, P. M.: 1981, ‘Benthic algal communities in acid lakes’, in R. Singer (ed.), Effects of Acid Precipitation on Benthos, The North American Benthological Society, Springfield, IL, U.S.A., pp. 119–138.

    Google Scholar 

  • Stokes, P. M.: 1986, ‘Ecological effect of acidification on primary producers in aquatic ecosystems’, Water Air Soil Pollut. 30, 421–438.

    Article  Google Scholar 

  • Stokes, P. M., Howell, E. T. and Kratnzberg, G.: 1989, ‘Effects of acidic precipitation on the biota of freshwater lakes’, in D.C. Adrian and A. H. Johnson (eds.), Acid Precipitation, Springer-Verlag, New York, NY, U.S.A., pp. 273–304.

    Google Scholar 

  • Stout, W. E.: 1944, ‘Sandstones and conglomerates in Ohio’, Ohio J. Sci. 44, 75–88.

    Google Scholar 

  • Sutton, P.: 1970, Reclamation of Toxic Coal Mine Spoil Banks, Ohio Report 55, pp. 99–101.

  • Taft, C. E. and Taft, C. W.: 1971, The Algae of Western Lake Erie, Ohio State University, Columbus, 189 pp.

    Google Scholar 

  • ter Braak, C. J. F. and Prentice, I. C.: 1988, ‘A theory of gradient analysis’, Adv. Ecol. Res. 18, 271–317.

    Google Scholar 

  • ter Braak, C. J. F. and šmilauer, P.: 1998, CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, version 4.0, Microcomputer Power, Ithaca, NY, U.S.A.

  • Turner, M. A., Howell, E. T., Summersby, M., Hesslein, R. H., Jackson, M. B. and Findlay, D. L.: 1991, ‘Changes in epilithon and epiphyton associated with experimental acidification of a lake to 5.0’, Limnol. Oceanogr. 36, 1390–1405.

    CAS  Google Scholar 

  • United States Department of the Interior: 2000, People Land Water, 78 pp.

  • Verb, R. G. and Vis, M. L.: 2000, ‘Comparison of benthic diatom assemblages from streams draining abandoned and reclaimed coal mines and nonimpacted sites’, J. N. Am. Benthol. Soc. 19, 274– 288.

    Google Scholar 

  • Verb, R. G. and Vis, M. L.: 2001, ‘Macroalgal communities from an acid mine drainage impacted watershed’, Aquat. Bot. 71, 93–107.

    Article  Google Scholar 

  • Verb, R. G., Casamatta, D. A. and Vis, M. L.: 2001, ‘Effects of different vegetative substrates on algal composition in vernal mesocosms’, Hydrobiologia 445, 111–120.

    Article  Google Scholar 

  • Wetzel, K. L. and Hoffman, S. A.: 1989, Distribution of Water-Quality Characteristics that may Indicate the Presence of Acid Mine Drainage in the Eastern Coal Province of the United States. Hydrologic Investigations Atlas 705, US Geological Survey, Washington, DC, U.S.A.

  • Wetzel, R. G. and Likens, G. E.: 2000, Limnological Analyses, Springer-Verlag Inc., New York, NY, U.S.A., 429 pp.

    Google Scholar 

  • Whitford, L. A. and Schumacher, G. J.: 1984, A Manual of Fresh-Water Algae, Sparks Press, Raleigh, NC, U.S.A., 337 pp.

    Google Scholar 

  • Winterbourn, M. J., McDiffet, W. F. and Eppley, S. J.: 1992, ‘Aluminum and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: Effects of trophic level’, Sci. Total Environ. 254, 45–54.

    Article  Google Scholar 

  • Yan, N. D. and Stokes, P. M.: 1978, ‘Phytoplankton of an acidic lake, and its responses to experimental alterations of pH’, Environ. Conserv. 5, 93–100.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Verb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verb, R.G., Vis, M.L. Periphyton Assemblages as Bioindicators of Mine-Drainage in Unglaciated Western Allegheny Plateau Lotic Systems. Water Air Soil Pollut 161, 227–265 (2005). https://doi.org/10.1007/s11270-005-4285-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-4285-8

Keywords

Navigation