Skip to main content
Log in

Evaluation of Inpainting and Augmentation for Censored Image Queries

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Images can be censored by masking the region(s) of interest with a solid color or pattern. When a censored image is used for classification or matching, the mask itself may impact the results. Recent work in image inpainting and data augmentation provide two different approaches for dealing with censored images. In this paper, we perform an extensive evaluation of these methods to understand if the impact of censoring can be mitigated for image classification and retrieval. Results indicate that modern learning-based inpainting approaches outperform augmentation strategies and that metrics typically used to evaluate inpainting performance (e.g., reconstruction accuracy) do not necessarily correspond to improved classification or retrieval, especially in the case of person-shaped masked regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Due to library conflicts with the GPU version of GLCIC, we used the CPU version in testing.

References

  • Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

  • Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. B. (2009). Patchmatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics, 28, 24.

    Article  Google Scholar 

  • Bertalmio, M., Bertozzi, A. L., & Sapiro, G. (2001). Navier–Stokes, fluid dynamics, and image and video inpainting. In Proceedings of IEEE conference on computer vision and pattern recognition.

  • Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In Proceedings of the 27th annual conference on computer graphics and interactive techniques (pp. 417–424).

  • Bertalmio, M., Vese, L., Sapiro, G., & Osher, S. (2003). Simultaneous structure and texture image inpainting. IEEE Transactions on Image Processing, 12(8), 882–889.

    Article  Google Scholar 

  • Black, S., Keshavarz, S., & Souvenir, R. (2020). Evaluation of image inpainting for classification and retrieval. In The IEEE winter conference on applications of computer vision (WACV).

  • Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018). Vggface2: A dataset for recognising faces across pose and age. In IEEE international conference on automatic face & gesture recognition (pp. 67–74). IEEE

  • Chan, T., & Shen, J. (2000). Mathematical models for local deterministic inpainting. UCLA computational and applied mathematics reports.

  • Chan, T. F., & Shen, J. (2001). Nontexture inpainting by curvature-driven diffusions. Journal of Visual Communication and Image Representation, 12, 436–449.

    Article  Google Scholar 

  • Chhabra, J. K., & Birchha, M. V. (2014). Detailed survey on exemplar based image inpainting techniques. International Journal of Computer Science and Information Technologies, 5(5), 635–6350.

    Google Scholar 

  • Criminisi, A., Pérez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212.

    Article  Google Scholar 

  • Darabi, S., Shechtman, E., Barnes, C., Goldman, D. B., & Sen, P. (2012). Image melding: Combining inconsistent images using patch-based synthesis. ACM Transactions on Graphics, 31, 1–82.

    Article  Google Scholar 

  • DeVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552.

  • Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In Proceedings of international conference on computer vision (pp. 1033–1038).

  • Fong, R., & Vedaldi, A. (2019). Occlusions for effective data augmentation in image classification. arXiv preprint arXiv:1910.10651.

  • Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 2414–2423).

  • Guillemot, C., & Le Meur, O. (2013). Image inpainting: Overview and recent advances. IEEE Signal Processing Magazine, 31, 127–144.

    Article  Google Scholar 

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein GANs. In Advances in neural information processing systems (pp. 5767–5777).

  • Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). GANs trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information processing systems (pp. 6626–6637).

  • Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., & Soudry, D. (2019). Augment your batch: Better training with larger batches. arXiv preprint arXiv:1901.09335.

  • Hong, X., Xiong, P., Ji, R., & Fan, H. (2019). Deep fusion network for image completion. In ACM multimedia.

  • Huang, J. B., Kang, S. B., Ahuja, N., & Kopf, J. (2014). Image completion using planar structure guidance. ACM Transactions on Graphic, 33(4), 1–10.

    Google Scholar 

  • Iizuka, S., Simo-Serra, E., & Ishikawa, H. (2017). Globally and locally consistent image completion. ACM Transactions on Graphics, 36(4), 1–14.

    Article  Google Scholar 

  • Inoue, H. (2018). Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929.

  • Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In Proceedings of European conference on computer vision (pp. 694–711).

  • Köhler, R., Schuler, C., Schölkopf, B., & Harmeling, S. (2014). Mask-specific inpainting with deep neural networks. In German conference on pattern recognition (pp. 523–534).

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).

  • Liang, L., Liu, C., Xu, Y. Q., Guo, B., & Shum, H. Y. (2001). Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics, 20, 127–150.

    Article  Google Scholar 

  • Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Proceedings of European conference on computer vision (pp. 740–755). Springer.

  • Liu, G., Reda, F. A., Shih, K. J., Wang, T. C., Tao, A., & Catanzaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In Proceedings of European conference on computer vision.

  • Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of international conference on computer vision.

  • Moreno-Barea, F. J., Strazzera, F., Jerez, J. M., Urda, D., & Franco, L. (2018). Forward noise adjustment scheme for data augmentation. In IEEE symposium series on computational intelligence (pp. 728–734). IEEE.

  • Nazeri, K., Ng, E., Joseph, T., Qureshi, F., & Ebrahimi, M. (2019). Edgeconnect: Generative image inpainting with adversarial edge learning. In IEEE international conference on computer vision workshop.

  • Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 2536–2544).

  • Perez, L., & Wang, J .(2017). The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621.

  • Rane, S. D., Sapiro, G., & Bertalmio, M. (2003). Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Transactions on Image Processing, 12, 296–303.

    Article  MathSciNet  Google Scholar 

  • Ren, Y., Yu, X., Zhang, R., Li, T. H., Liu, S., & Li, G. (2019). Structureflow: Image inpainting via structure-aware appearance flow. In Proceedings of international conference on computer vision (pp. 181–190).

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241).

  • Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 815–823).

  • Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93, 1591–1595.

    Article  MathSciNet  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

  • Singh, K. K., & Lee, Y. J. (2017). Hide-and-seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In Proceedings of international conference on computer vision (pp. 3544–3553).

  • Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. In Advances in neural information processing systems (pp. 3483–3491).

  • Song, Y., Yang, C., Lin, Z., Liu, X., Huang, Q., Li, H., & Jay Kuo, C. C. (2018). Contextual-based image inpainting: Infer, match, and translate. In Proceedings of European conference on computer vision (pp. 3–19).

  • Stylianou, A., Xuan, H., Shende, M., Brandt, J., Souvenir, R., & Pless, R. (2019). Hotels-50k: A global hotel recognition dataset. In Proceedings of national conference on artificial intelligence.

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).

  • Telea, A. (2004). An image inpainting technique based on the fast marching method. Journal of Graphics Tools, 9, 23–34.

    Article  Google Scholar 

  • Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. (2018a). High-resolution image synthesis and semantic manipulation with conditional GANs. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 8798–8807).

  • Wang, X., Wang, K., & Lian, S. (2020). A survey on face data augmentation for the training of deep neural networks. In Neural computing and applications (pp. 1–29)

  • Wang, Y., Tao, X., Qi, X., Shen, X., & Jia, J. (2018b). Image inpainting via generative multi-column convolutional neural networks. In Advances in neural information processing systems (pp. 331–340).

  • Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P., et al. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600–612.

    Article  Google Scholar 

  • Wu, X., Xu, K., & Hall, P. (2017). A survey of image synthesis and editing with generative adversarial networks. Tsinghua Science and Technology, 22, 660–674.

    Article  Google Scholar 

  • Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep neural networks. In Advances in neural information processing systems (pp. 341–349).

  • Xu, L., Yan, Q., Xia, Y., & Jia, J. (2012). Structure extraction from texture via relative total variation. ACM Transactions on Graphics, 31(6), 1–10.

    Google Scholar 

  • Xu, Z., & Sun, J. (2010). Image inpainting by patch propagation using patch sparsity. IEEE Transactions on Image Processing, 19, 1153–1165.

    Article  MathSciNet  Google Scholar 

  • Yeh, R. A., Chen, C., Yian Lim, T., Schwing, A. G., Hasegawa-Johnson, M., & Do, M. N. (2017). Semantic image inpainting with deep generative models. In Proceedings of IEEE conference on computer vision and pattern recognition.

  • Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.

  • Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2018). Generative image inpainting with contextual attention. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 5505–5514).

  • Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., & Huang, T. S. (2019). Free-form image inpainting with gated convolution. In Proceedings of international conference on computer vision (pp. 4471–4480).

  • Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499–1503.

    Article  Google Scholar 

  • Zheng, C., Cham, T. J., & Cai, J. (2019). Pluralistic image completion. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 1438–1447).

  • Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random erasing data augmentation. In Proceedings of national conference on artificial intelligence.

  • Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1452–1464.

    Article  Google Scholar 

  • Zhou, T., Tulsiani, S., Sun, W., Malik, J., & Efros, A. A .(2016). View synthesis by appearance flow. In Proceedings of European conference on computer vision (pp. 286–301). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Black.

Additional information

Communicated by Daniel Scharstein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, S., Keshavarz, S. & Souvenir, R. Evaluation of Inpainting and Augmentation for Censored Image Queries. Int J Comput Vis 129, 977–997 (2021). https://doi.org/10.1007/s11263-020-01403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-020-01403-1

Keywords

Navigation