Skip to main content

Advertisement

Log in

Invasive fountain grass (Pennisetum setaceum (Forssk.) Chiov.) increases its potential area of distribution in Tenerife island under future climatic scenarios

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Mapping the distribution of invasive species under current and future climate conditions is crucial to implement sustainable and effective conservation strategies. Several studies showed how invasive species may benefit from climate change fostering their invasion rate and, consequently, affecting the native species community. In the Canary Islands and on Tenerife in particular, previous research mostly focused on climate change impacts on the native communities, whereas less attention has been paid on alien species distribution under climate change scenarios. In this study, we modelled the habitat distribution of Pennisetum setaceum, one of the most invasive alien species on Tenerife. In addition, we described the species’ potential distribution shift in the light of two climate change scenarios (RCP2.6, RCP8.5), highlighting the areas that should be prioritized during management and eradication programs. P. setaceum’s suitable areas are located in the coastal area, with higher habitat suitability near cities and below 800 m asl. In both future climate change scenarios, the geographic distribution of P. setaceum suitable areas is characterized by an elevational shift, which is more pronounced in the RCP8.5 scenario. Despite being drought resistant, water supply is crucial for the species’ seed germination, thus supporting future species’ shift to higher elevation and in the north–north–west part of the island, where it could benefit from the combined effect of orographic precipitations and humidity carried by trade winds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adkins E, Cordell S, Drake DR (2011) Role of fire in the germination ecology of fountain grass (Pennisetum setaceum), an invasive african bunchgrass in Hawai’i. Pac Sci 65(1):17–26

    Google Scholar 

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spthin: an R package for spatial thinning of species occurrence records for use in ecological Niche models. Ecography 38(5):541–545

    Google Scholar 

  • Arechavaleta M, Rodríguez S, Zurita N, García A (2010) Lista de especies silvestres de canarias. Hongos, plantas y animales terrestres. Gobierno de Canarias, Tenerife

    Google Scholar 

  • Arévalo J, Otto R, Escudero C, Fernández-Lugo S, Arteaga M, Delgado J, Fernández-Palacios J (2010) Do anthropogenic corridors homogenize plant communities at a local scale? A case studied in Tenerife (Canary Islands). Plant Ecol 209(1):23–35

    Google Scholar 

  • Arteaga MA, Delgado JD, Otto R, Fernández-Palacios JM, Arévalo JR (2009) How do alien plants distribute along roads on oceanic islands? A case study in Tenerife, Canary Islands. Biol Invasions 11(4):1071–1086

    Google Scholar 

  • Bacaro G, Maccherini S, Chiarucci A, Jentsch A, Rocchini D, Torri D, Gioria M, Tordoni E, Martellos S, Altobelli A et al (2015) Distributional patterns of endemic, native and alien species along a roadside elevation gradient in Tenerife, Canary Islands. Commun Ecol 16(2):223–234

    Google Scholar 

  • Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE 13:3. https://doi.org/10.1371/journal.pone.0193085

    Article  CAS  Google Scholar 

  • Barni E, Bacaro G, Falzoi S, Spanna F, Siniscalco C (2012) Establishing climatic constraints shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecol 213(5):757–767

    Google Scholar 

  • Bella S, D’Urso V et al (2012) First record in the Mediterranean basin of the alien leafhopper Balclutha Brevis living on invasive Pennisetum setaceum. Bull Insectol 65(2):195–198

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    PubMed Central  PubMed  Google Scholar 

  • Bellard C, Leclerc C, Courchamp F (2014) Impact of sea level rise on the 10 insular biodiversity hotspots. Glob Ecol Biogeogr 23(2):203–212

    Google Scholar 

  • Benedetti Y, Morelli F (2017) Spatial mismatch analysis among hotspots of alien plant species, road and railway networks in Germany and Austria. PLoS ONE 12(8):e0183691

    PubMed Central  PubMed  Google Scholar 

  • Brundu G, Richardson DM (2016) Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions

  • Chuine I, Morin X, Sonié L, Collin C, Fabreguettes J, Degueldre D, Salager J-L, Roy J (2012) Climate change might increase the invasion potential of the alien C4 grass Setaria parviflora (Poaceae) in the Mediterranean Basin. Divers Distrib 18(7):661–672

    Google Scholar 

  • Cordell S, Sandquist D (2008) The impact of an invasive African bunchgrass (Pennisetum setaceum) on water availability and productivity of canopy trees within a tropical dry forest in Hawaii. Funct Ecol 22(6):1008–1017

    Google Scholar 

  • Courchamp F, Chapuis J-L, Pascal M (2003) Mammal invaders on islands: impact, control and control impact. Biol Rev 78(3):347–383

    PubMed  Google Scholar 

  • Cropper T (2013) The weather and climate of Macaronesia: past, present and future. Weather 68(11):300–307

    Google Scholar 

  • Cropper TE, Hanna E (2014) An analysis of the climate of Macaronesia, 1865–2012. Int J Climatol 34(3):604–622

    Google Scholar 

  • Da Re D, Tordoni E, Pérez ZN, Fernández-Palacios JM, Arévalo JR, Otto R, Rocchini D, Bacaro G (2019) A spatially-explicit model of alien plant richness in Tenerife (Canary Islands). Ecol Complex 38:75–82

    Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23(1):63–87

    Google Scholar 

  • Davis SJ, Socolow RH (2014) Commitment accounting of Co2 emissions. Environ Res Lett 9(8):084018

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534

    Google Scholar 

  • de Paz PLP, Gallo AG, Heene A (1999) Control y erradicación del “Rabo-Gato” (‘Pennisetum setaceum’) en la Isla de Palma. Universidad de la Laguna, San Cristóbal de La Laguna

    Google Scholar 

  • Delgado JD, Arévalo JR, Fernández-Palacios J (2004) Consecuencias de la fragmentación viaria: efectos de borde de las carreteras en la laurisilva y el pinar de Tenerife. Ecología Insular/Island Ecology. Asociación Española de Ecología Terrestre (AEET)-Cabildo Insular de la Palma, pp 181–225

  • Devesa Alcaraz JA, Arnelas I et al (2006) Pennisetum setaceum (forssk.) Chiov. (Poaceae), nueva localidad para la flora ibérica. Acta Bot Malac 31:190–191

    Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B, Breiner FT, Damen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A et al (2017) ecospat: an r package to support spatial analyses and modeling of species niches and distributions. Ecography 40(6):774–787

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14(4):135–139

    CAS  PubMed  Google Scholar 

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24(3):1150–1163

    Google Scholar 

  • Early R, Sax DF (2014) Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23(12):1356–1365

    Google Scholar 

  • Ehleringer J, Björkman O (1977) m yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiol 59(1):86–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of maxent for ecologists. Divers Distrib 17(1):43–57

    Google Scholar 

  • Fernández-Palacios JM, Rijsdijk KF, Norder SJ, Otto R, de Nascimento L, Fernández-Lugo S, Tjørve E, Whittaker RJ (2016) Towards a glacial-sensitive model of island biogeography. Glob Ecol Biogeogr 25(7):817–830

    Google Scholar 

  • Follak S, Eberius M, Essl F, Fürdös A, Sedlacek N, Trognitz F (2018) Invasive alien plants along roadsides in Europe. EPPO Bull 48(2):256–265

    Google Scholar 

  • Foxcroft LC, Spear D, van Wilgen NJ, McGeoch MA (2019) Assessing the association between pathways of alien plant invaders and their impacts in protected areas. NeoBiota 43:1

    Google Scholar 

  • Francisco-Ortega J, Santos-Guerra A, Bacallado JJ (2009) Canary Islands, biology. In: Gillespie R (ed) Encyclopedia of islands. California Press, Berkeley, pp 127–133

    Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution models-how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21(11):1126–1136

    Google Scholar 

  • García-Herrera R, Gallego D, Hernández E, Gimeno L, Ribera P, Calvo N (2003) Precipitation trends in the Canary Islands. Int J Climatol 23(2):235–241

    Google Scholar 

  • Garzón-Machado V, Otto R, del Arco Aguilar MJ (2014) Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques. Int J Biometeorol 58(5):887–899

    PubMed  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):101029

    Google Scholar 

  • Gobierno de Canarias (2019). Biodiversity Data Bank of the Canary Islands (https://www.biodiversidadcanarias.es/biota) [Date of consultation: 15/04/2019]

  • Goergen E, Daehler CC (2002) Factors affecting seedling recruitment in an invasive grass (Pennisetum setaceum) and a native grass (Heteropogon contortus) in the Hawaiian Islands. Plant Ecol 161(2):147–156

    Google Scholar 

  • González-Rodríguez AM, Baruch Z, Palomo D, Cruz-Trujillo G, Jiménez MS, Morales D (2010) Ecophysiology of the invader Pennisetum setaceum and three native grasses in the Canary Islands. Acta Oecologica 36(2):248–254

    Google Scholar 

  • Gremmen N, Chown S, Marshall D (1998) Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol Conserv 85(3):223–231

    Google Scholar 

  • Guevara L, Gerstner BE, Kass JM, Anderson RP (2018) Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Glob Change Biol 24(4):1511–1522

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    PubMed  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. Cambridge University Press, Cambridge

    Google Scholar 

  • Hansen A et al (1970) Contributions to the flora of the Canary Islands (especially Tenerife). Cuad Bot Canar 9:37–59

    Google Scholar 

  • Hernandez RR, Sandquist DR (2011) Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub. Plant Ecol 212(10):1709

    Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo’. Circles 9(1):1–68

    Google Scholar 

  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199(2):142–152

    Google Scholar 

  • Hobi S (2008) Analyse der Faktoren Klima und Störung als Höhenlimite des Neophyten Pennisetum setaceum auf Teneriffa. Semesterarbeit. Lehrstuhl für Landschaftsökologie, Department für Ökologie und Ökosystemmanagement, Technische Universität München

  • Hulme PE (2009) Handbook of alien species in Europe, vol 569. Springer, New York

    Google Scholar 

  • Jacobi JD, Warshauer FR (1992) Distribution of six alien plant species in upland habitats on the island of Hawaii. Alien plant invasions in native ecosystems of Hawaii. Cooperative National Park Resources Studies Unit, University of Hawaii, Honolulu, pp 155–188

    Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton J, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13(12):2785–2797

    Google Scholar 

  • Kalwij JM, Robertson MP, van Rensburg BJ (2015) Annual monitoring reveals rapid upward movement of exotic plants in a montane ecosystem. Biol Invasions 17(12):3517–3529

    Google Scholar 

  • Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115(1):186–191

    Google Scholar 

  • Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJ, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11(1):21–45

    Google Scholar 

  • Khalyani AH, Gould WA, Harmsen E, Terando A, Quinones M, Collazo JA (2016) Climate change implications for tropical islands: interpolating and interpreting statistically downscaled gcm projections for management and planning. J Appl Meteorol Climatol 55(2):265–282

    Google Scholar 

  • Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biol Conserv 143(2):382–390

    Google Scholar 

  • Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer J-Y, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12(2):145–161

    Google Scholar 

  • Luque A, Martín JL, Dorta P, Mayer P et al (2014) Temperature trends on Gran Canaria (Canary Islands), an example of global warming over the subtropical Northeastern Atlantic. Atmos Clim Sci 4(1):20–28

    Google Scholar 

  • Martín Esquivel J, García H, Redondo C, García I, Carralero I (1995) La red canaria de espacios naturales protegidos. Gobierno de Canarias, Viceconsejería de Medio Ambiente, Santa Cruz

    Google Scholar 

  • Martín JL, Bethencourt J, Cuevas-Agulló E (2012) Assessment of global warming on the island of Tenerife, Canary Islands (Spain), trends in minimum, maximum and mean temperatures since 1944. Clim Change 114(2):343–355

    Google Scholar 

  • Matías L, Jump AS (2013) Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J Exp Bot 65(1):299–310

    PubMed Central  PubMed  Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr 19(1):122–133

    Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Millennium Ecosystem Assessment, Washington, DC

    Google Scholar 

  • Morales CL, Aizen MA (2002) Does invasion of exotic plants promote invasion of exotic flower visitors? A case study from the temperate forests of the southern andes. Biol Invasions 4(1):87–100

    Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) Enm eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models. Methods Ecol Evol 5(11):1198–1205

    Google Scholar 

  • Myers DE (1984) Co-kriging—new developments. Springer, Dordrecht, pp 295–305

    Google Scholar 

  • Pasta S, Badalamenti E, Mantia TL (2010) Tempi e modi di un’invasione incontrastata: Pennisetum setaceum (Forssk.) Chiov. (Poaceae) in sicilia. Naturalista Sicil 34:487–525

    Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18(1):238–248

    Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernández-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini LP, Cooper HA, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues PP, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–501

    CAS  PubMed  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions (MPB-49), vol 56. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19(1):181–197

    PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of maxent. Ecography 40(7):887–893

    Google Scholar 

  • Potgieter LJ, Gaertner M, O’Farrell PJ, Richardson DM (2019) Perceptions of impact: invasive alien plants in the urban environment. J Environ Manag 229:76–87

    Google Scholar 

  • Poulin J, Sakai AK, Weller SG, Nguyen T (2007) Phenotypic plasticity, precipitation, and invasiveness in the fire-promoting grass Pennisetum setaceum (Poaceae). Am J Bot 94(4):533–541

    PubMed  Google Scholar 

  • Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists, vol 53. Wiley Online Library, Hoboken, pp 131–143

    Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F et al (2010) Disentangling the role of environmental and human pressures on biological invasions across europe. Proc Nat Acad Sci USA 107(27):12157–12162

    PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabesaz FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón EL, Chatelain C, Dullinger S, Ebel AL, Figueiredo E, Fuentes NJ, Genovesi P, Groom QJ, Henderson LM, Inderjit Kupriyanov A, Masciadri S, Maurel N, Meerman JC, Morozova OV, Moser D, Nickrent DL, Nowak PM, Pagad S, Patzelt A, Pelser PB, Seebens H, Shu W, Thomas JJ, Velayos M, Weber E, Wieringa JJ, Baptiste MP, van Kleunen M (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Czech Botl Soc 89:203–274

    Google Scholar 

  • Qian H, Ricklefs RE (2006) The role of exotic species in homogenizing the North American flora. Ecol Lett 9(12):1293–8

    PubMed  Google Scholar 

  • Rahlao SJ, Esler KJ, Milton SJ, Barnard P (2010) Nutrient addition and moisture promote the invasiveness of crimson fountaingrass (Pennisetum setaceum). Weed Sci 58(2):154–159

    CAS  Google Scholar 

  • Ribeiro PJ Jr, Diggle PJ et al (2001) geor: a package for geostatistical analysis. R news 1(2):14–18

    Google Scholar 

  • Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W et al (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8):913–929

    Google Scholar 

  • Rodríguez-Caballero G, Caravaca F, del Mar Alguacil M, Fernández-López M, Fernández-González AJ, Roldán A (2017) Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biol Biochem 109:176–187

    Google Scholar 

  • Rodríguez-Caballero G, Caravaca F, Roldán A (2018) The unspecificity of the relationships between the invasive Pennisetum setaceum and mycorrhizal fungi may provide advantages during its establishment at semiarid mediterranean sites. Sci Total Environ 630:1464–1471

    PubMed  Google Scholar 

  • Saavedra M, Alcántara C (2017) Pennisetum setaceum, planta invasora en expansión. In: Mercedes Royuela Hernando y Ana Zabalza Aznárez (editoras): XVI Congreso de la Sociedad Española de Malherbología: actas. Pamplona-Iruña, 25-27 octubre, 2017. Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa, 2017. Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa

  • Sage RF, Kubien DS (2003) Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77(2–3):209–225

    CAS  PubMed  Google Scholar 

  • Sánchez-Benítez A, García-Herrera R, Vicente-Serrano SM (2017) Revisiting precipitation variability, trends and drivers in the Canary Islands. Int J Climatol 37(9):3565–3576

    Google Scholar 

  • Scalera R, Genovesi P, Essl F, Rabitsch W (2012) The impacts of invasive alien species in Europe. Eur Environ Agency Tech Rep 16:114

    Google Scholar 

  • Schuster MJ, Wragg PD, Reich PB (2018) Using revegetation to suppress invasive plants in grasslands and forests. J Appl Ecol 55(5):2362–2373

    Google Scholar 

  • Sladonja B, Poljuha D (2018) Citizen science as a tool in biological recording: a case study of Ailanthus altissima (Mill.) Swingle. Forests 9(1):31

    Google Scholar 

  • Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob Planet Change 63(2–3):112–126

    Google Scholar 

  • Steinbauer MJ, Irl SDH, González-Mancebo JM, Breiner FT, Hernández-Hernández R, Hopfenmüller S, Kidane YM, Jentsch A, Beierkuhnlein C (2017) Plant invasion and speciation along elevational gradients on the oceanic island La Palma, Canary Islands. Ecol Evol 7(2):771–779

    PubMed  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, VanDerWal J, Reuther KD, Christian E, Stauffer C, Suarez AV, Williams SE, Crozier RH (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive tetramorium ant species. Divers Distrib 14(2008):538–545

    Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135(5):649–670

    Google Scholar 

  • Stocker T (2014) Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sweet LC, Holt JS (2015) Establishment stage competition between exotic Crimson fountaingrass (Pennisetum setaceum, C4) and native Purple Needlegrass (Stipa pulchra, C3). Invasive Plant Sci Manag 8(2):139–150

    CAS  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of maxent species distribution models. PLoS ONE 8(2):e55158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552

    CAS  PubMed  Google Scholar 

  • Toby Kiers E, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13(12):1459–1474

    CAS  PubMed  Google Scholar 

  • Tordoni E, Napolitano R, Nimis P, Castello M, Altobelli A, Da Re D, Zago S, Chines A, Martellos S, Maccherini S, Bacaro G (2017) Diversity patterns of alien and native plant species in trieste port area: exploring the role of urban habitats in biodiversity conservation. Urban Ecosyst 20(5):1151–1160

    Google Scholar 

  • Tordoni E, Petruzzellis F, Nardini A, Savi T, Bacaro G (2019) Make it simpler: alien species decrease functional diversity of coastal plant communities. J Veg Sci 30(3):498–509

    Google Scholar 

  • Tordoni E, Petruzzellis F, Nardini A, Bacaro G (2020) Functional divergence drives invasibility of plant communities at the edges of a resource availability gradient. Diversity 12(4):148

    Google Scholar 

  • Tunison JT (1992) Fountain grass control in Hawaii Volcanoes National Park: management considerations and strategies. Alien plant invasions in native ecosystems of Hawaii: management and research. Cooperative National Parks Resources Studies Unitn, University of Hawai’i at Manoa, Honolulu, pp 376–393

    Google Scholar 

  • Vilà M, López-Darias M (2006) Contrasting biogeography of endemic and alien terrestrial species in the canary islands. Orsis organismes i sistemes 21:91–101

    Google Scholar 

  • Vilà M, Espinar JAL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–8

    PubMed  Google Scholar 

  • Walentowitz AJ, Irl SD, Acevedo Rodríguez AJ, Palomares-Martínez Á, Vetter V, Zennaro B, Medina FM, Beierkuhnlein C (2019) Graminoid invasion in an insular endemism hotspot and its protected areas. Diversity 11(10):192

    Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342

    PubMed  Google Scholar 

  • West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J (2016) Field validation of an invasive species maxent model. Ecol Inform 36:126–134

    Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Williams D, Black R (1993) Phenotypic variation in contrasting temperature environments: growth and photosynthesis in Pennisetum setaceum from different altitudes on Hawaii. Funct Ecol 7:623–633

    Google Scholar 

  • Williams DG, Mack RN, Black RA (1995) Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology 76(5):1569–1580

    Google Scholar 

  • Wilson AM, Silander JA (2014) Estimating uncertainty in daily weather interpolations: a Bayesian framework for developing climate surfaces. Int J Climatol 34(8):2573–2584

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Teno Rural Park for having shared its IAS database. We are grateful to the anonymous reviewers for the constructive and positive suggestions. D.D.R. was supported by an ERASMUS+ 2015-2016 grant provided by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Da Re.

Additional information

Communicated by Paul M. Ramsay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 1183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Re, D., Tordoni, E., De Pascalis, F. et al. Invasive fountain grass (Pennisetum setaceum (Forssk.) Chiov.) increases its potential area of distribution in Tenerife island under future climatic scenarios. Plant Ecol 221, 867–882 (2020). https://doi.org/10.1007/s11258-020-01046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01046-9

Keywords

Navigation