Skip to main content
Log in

Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nickel-based catalysts supported on sepiolite catalysts, with a nickel loading between 1 and 10 wt%, have been synthesized by several synthetic strategies (precipitation-deposition, impregnation and grafting-complexation) and subsequent calcination and reduction. The catalysts were characterized by H2 thermoprogrammed reduction (H2-TPR), X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption at − 196 °C, NH3 thermoprogrammed desorption (NH3-TPD) and CO chemisorption. FUR hydrogenation in gas-phase revealed that the most active catalyst was the catalyst synthesized by the grafting-complexation method due to its highest metallic surface area and smallest metal crystal size, reaching a FUR yield close to 85% after 5 h of time-on-stream (TOS) at 190 °C, using a H2:FUR molar ratio of 11.5 and a WHSV of 1.5 h−1. Furan (F), methylfuran (MF) and furfuryl alcohol (FOL); however, the selectivity towards F and MF tend to decrease with the TOS, while FOL selectivity increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  2. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  3. Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C (2018) Hydrolysis of hemicellulose and derivatives—a review of recent advances in the production of furfural. Front Chem. 6:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Ney Work

    Google Scholar 

  5. Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676

    Article  CAS  Google Scholar 

  6. Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd, and Ni. Catal Lett 141:784–791

    Article  CAS  Google Scholar 

  7. Shi Y, Zhu Y, Yang Y, Li YW, Jiao H (2015) Exploring furfural catalytic conversion on Cu (111) from computation. ACS Catal 5:4020–4032

    Article  CAS  Google Scholar 

  8. Jiménez-Gómez CP, Cecilia JA, Moreno-Tost R, Maireles-Torres P (2017) Selective production of 2-methylfuran by gas-phase hydrogenation of furfural on copper incorporated by complexation in mesoporous silica catalysts. Chemsuschem 10:1448–1459

    Article  CAS  PubMed  Google Scholar 

  9. Jiménez-Gómez CP, Cecilia JA, Moreno-Tost R, Maireles-Torres P (2017) Nickel phosphide/silica catalysts for the gas-phase hydrogenation of furfural to high-added-value chemicals. ChemCatChem 9:2881–2889

    Article  CAS  Google Scholar 

  10. Nakagawa Y, Tamura M, Tomishige K (2017) Supported metal catalysts for total hydrogenation of furfural and 5-hydroxymethylfurfural. J Jpn Petrol Inst 60:1–9

    Article  CAS  Google Scholar 

  11. Manikandan M, Venugopal AK, Prabu K, Jha RK, Thirumalaiswamy R (2016) Role of surface synergistic effect on the performance of Ni-based hydrotalcite catalyst for highly efficient hydrogenation of furfural. J Mol Catal A Chem 417:153–162

    Article  CAS  Google Scholar 

  12. Sulmonetti TP, Pang SH, Claure MT, Lee S, Cullen DA, Agrawal PK, Jones CW (2016) Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Appl Catal A. 517:187–195

    Article  CAS  Google Scholar 

  13. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198

    Article  CAS  Google Scholar 

  14. Murray HH (2006) Structure and composition of the clay minerals and their physical and chemical properties. Dev Clay Sci 2:7–31

    Article  Google Scholar 

  15. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  16. Brunauer S, Emmett P, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  17. Landers J, Gor G, Neimark A (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Aspects 437:3–32

    Article  CAS  Google Scholar 

  18. Cecilia JA, Jiménez-Morales I, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2013) Influence of the silica support on the activity of Ni and Ni2P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation. J Mol Catal A: Chem 368:78–87

    Article  CAS  Google Scholar 

  19. Tang S, Lin J, Tan KL (1998) Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2. Catal Lett 51:169–175

    Article  CAS  Google Scholar 

  20. He S, Wu H, Yu W, Mo L, Lou H, Zheng X (2009) Combination of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2 and Ni-Al2O3/SiO2 catalysts with different precursors. Int J Hydrogen Energy 34:839–843

    Article  CAS  Google Scholar 

  21. Bailey SW (1984) Structures of layer silicates. Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

    Google Scholar 

  22. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodríguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  23. Jiménez-Gómez CP, Cecilia JA, Durán-Martín D, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Mariscal R, Maireles-Torres P (2016) Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J Catal 336:107–115

    Article  CAS  Google Scholar 

  24. Jiménez-Gómez CP, Cecilia JA, Márquez-Rodríguez I, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Maireles-Torres P (2017) Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catal Today 279:327–338

    Article  CAS  Google Scholar 

  25. Hadjiivanov K, Knözinger H, Mihaylov M (2002) FTIR study of CO adsorption on Ni-ZSM-5. J Phys Chem B 106:2618–2624

    Article  CAS  Google Scholar 

  26. Dong F, Zhu Y, Zheng H, Zhu Y, Li X, Li Y (2015) Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A Gen 398:140–148

    Article  CAS  Google Scholar 

  27. Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J Catal 277:1–13

    Article  CAS  Google Scholar 

  28. Nagarajav BM, Padmasri AH, Raju BD, Rama Rao KS (2007) Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts. J Mol Catal A Chem 265:90–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2015-64226-C03-03-R project), Junta de Andalucía (RNM-1565) and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Cecilia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Torres, A., Jiménez-Gómez, C.P., Cecilia, J.A. et al. Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance. Top Catal 62, 535–550 (2019). https://doi.org/10.1007/s11244-019-01168-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01168-z

Keywords

Navigation