Skip to main content
Log in

Nitrogen monoxide storage and sensing applications of transition metal–doped boron nitride nanotubes: a DFT investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural properties, electronic properties, and adsorption abilities for nitrogen monoxide (NO) molecule adsorption on pristine and transition metal (TM = V, Cr, Mn, Nb, Mo, Tc, Ta, W, and Re) doping on B or N site of armchair (5,5) single-walled boron nitride nanotube (BNNT) were investigated using the density functional theory method. The binding energies of TM-doped BNNTs reveal that the Mo atom doping exhibits the strongest binding ability with BNNT. In addition, the NO molecule weakly interacts with the pristine BNNT, whereas it has a strong adsorption ability on TM-doped BNNTs. The increase in the adsorption ability of NO molecule onto the TM-doped BNNTs is due to the geometrical deformation on TM doping site and the charge transfer between TM-doped BNNTs and NO molecule. Moreover, a significant decrease in energy gap of the BNNT after TM doping is expected to be an available strategy for improving its electrical conductivity. These observations suggest that NO adsorption and sensing ability of BNNT could be greatly improved by introducing appropriate TM dopant. Therefore, TM-doped BNNTs may be a useful guidance to be storage and sensing materials for the detection of NO molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Esrafili MD, Heydari S (2018) Carbon−doped boron−nitride fullerenes as efficient metal−free catalysts for oxidation of SO2 : a DFT study. Struct Chem 29:275

    CAS  Google Scholar 

  2. Muniyandi S, Sundaram R, Kar T (2018) Aluminum doping makes boron nitride nanotubes (BNNTs) an attractive adsorbent of hydrazine (N2H4). Struct Chem 29:375

    CAS  Google Scholar 

  3. Wanno B, Tabtimsa C (2014) A DFT investigation of CO adsorption on VIIIB transition metal–doped graphene sheets. Superlattice Microst 67:110

    CAS  Google Scholar 

  4. Roy S, Baiker A (2009) NOx storage–reduction catalysis : from mechanism and materials properties to storage–reduction performance. Chem Rev 109:4054

    CAS  PubMed  Google Scholar 

  5. Aplincourt P, Bohr F, Ruiz–Lopez MF (1998) Density functional studies of compounds involved in atmospheric chemistry: nitrogen oxides. J Mol Struct 426:95

    CAS  Google Scholar 

  6. Yamini Y, Moradi M (2014) Influence of topological defects on the nitrogen monoxide-sensing characteristics of graphene–analogue BN. Sensors Actuators B Chem 197:274

    CAS  Google Scholar 

  7. Promthong N, Nunthaboot N, Wanno B (2015) A DFT study of CO and NO adsorptions on AlN–, AlP–, and ZnO–doped graphene nanosheets. Z Phys Chem 230:267

    Google Scholar 

  8. Chandiramouli R, Srivastava A, Nagarajan V (2015) NO adsorption studies on silicene nanosheet : DFT investigation. Appl Surf Sci 351:662

    CAS  Google Scholar 

  9. Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: a first–principles study. Phys E 76:47

    CAS  Google Scholar 

  10. Esrafili MD, Saeidi N (2016) DFT calculations on the catalytic oxidation of CO over Si–doped (6,0) boron nitride nanotubes. Struct Chem 27:595

    CAS  Google Scholar 

  11. Singla P, Singhal S, Goel N (2013) Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface. Appl Surf Sci 283:881

    CAS  Google Scholar 

  12. Esrafili MD, Saeidi N (2017) N2O + SO2 reaction over Si– and C–doped boron nitride nanotubes: a comparative DFT study. Appl Surf Sci 403:43

    CAS  Google Scholar 

  13. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081

    CAS  Google Scholar 

  14. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335

    CAS  Google Scholar 

  15. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966

    CAS  PubMed  Google Scholar 

  16. Zhi C, Bando Y, Tan C, Golberg D (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 135:67

    CAS  Google Scholar 

  17. Wang J, Kayastha VK, Yap YK, Fan Z, Lu JG, Pan Z, Ivanov IN, Puretzky AA, Geohegan DB (2005) Low temperature growth of boron nitride nanotubes on substrates. Nano Lett 5:1

    Google Scholar 

  18. Juárez AR, Anota EC, Cocoletzi HH, Ramírez JFS, Castro M (2017) Stability and electronic properties of armchair boron nitride/carbon nanotubes. Fuller Nanotub Car N 12:716

    Google Scholar 

  19. Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi−wall boron nitride nanotube. Solid State Commun 105:297

    CAS  Google Scholar 

  20. Lan H, Ye L, Zhang S, Peng L (2009) Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations. Appl Phys Lett 94:183110

    Google Scholar 

  21. Chang CW, Fennimore AM, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettl A (2006) Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys Rev Lett 97:85901

    CAS  Google Scholar 

  22. Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes : pronounced resistance to oxidation. Appl Phys Lett 84:2430

    CAS  Google Scholar 

  23. Zhi C, Bando Y, Tang C, Xie R, Sekiguchi T, Golberg D (2005) Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J Am Chem Soc 127:15996

    CAS  PubMed  Google Scholar 

  24. Zhi C, Bando Y, Tang C, Golberg D (2006) Engineering of electronic structure of boron–nitride nanotubes by covalent functionalization. Phys Rev B 74:153413

    Google Scholar 

  25. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmadi A, Beheshtian J, Hadipour N (2011) Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem 22:183

    CAS  Google Scholar 

  27. Lauret JS, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal–Tretout B, Rosencher E, Goux–Capes L (2005) Optical transitions in single–wall boron nitride nanotubes. Phys Rev Lett 94:37405

  28. Soltani A, Raz SG, Rezaei VJ, Dehno Khalaji A, Savar M (2012) Ab initio investigation of Al– and Ga–doped single–walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci 263:619

    CAS  Google Scholar 

  29. Movlarooy T, Fadradi MA (2018) Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing. Chem Phys Lett 700:7

    CAS  Google Scholar 

  30. Beheshtian J, Ahmadi A, Bagheri Z (2012) Detection of phosgene by Sc–doped BN nanotubes : a DFT study. Sensors Actuators B Chem 171–172:846

    Google Scholar 

  31. Deng Z, Zhang J, Xu K (2015) First–principles study of SO2 molecule adsorption on the pristine and Mn–doped boron nitride nanotubes. Appl Surf Sci 347:485

    CAS  Google Scholar 

  32. Tang C, Bando Y, Ding X, Qi S, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550

    CAS  PubMed  Google Scholar 

  33. Xie Y, Zhang JM (2011) First–principles study on substituted doping of BN nanotubes by transition metals V, Cr, and Mn. Comput Theor Chem 976:215

    CAS  Google Scholar 

  34. Xie Y, Huo YP, Zhang JM (2012) First–principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci 258:6391

    CAS  Google Scholar 

  35. Wang R, Zhang D, Liu C (2014) The germanium–doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide. Comput Mater Sci 82:361

    CAS  Google Scholar 

  36. Mananghaya M, Yu D, Santos GN (2016) Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals. Int J Hydrog Energy 41:13531

    CAS  Google Scholar 

  37. Azizi K, Salabat K, Seif A (2014) Methane storage on aluminum–doped single wall BNNTs. Appl Surf Sci 309:54

    CAS  Google Scholar 

  38. Becke AD (2014) A new mixing of Hartree–Fock and local density–functional theories. J Chem Phys 98:1372

    Google Scholar 

  39. Becke AD (1988) Density–functional exchange−energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    CAS  Google Scholar 

  40. Becke AD (1993) Density–functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    CAS  Google Scholar 

  41. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270

    CAS  Google Scholar 

  42. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284

    CAS  Google Scholar 

  43. Buasaeng P, Rakrai W, Wanno B, Tabtimsai C (2017) DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc–, Ti–, V–, and Cr–doped single–walled carbon nanotubes. Appl Surf Sci 400:506

    CAS  Google Scholar 

  44. Baei MT, Bagheri Z, Peyghan AA (2013) Transition metal atom adsorptions on a boron nitride nanocage. Struct Chem 24:1039

    CAS  Google Scholar 

  45. Kaewruksa B, Ruangpornvisuti V (2011) Theoretical study on the adsorption behaviors of H2O and NH3 on hydrogen–terminated ZnO nanoclusters and ZnO graphene–like nanosheets. J Mol Struct 994:276

    CAS  Google Scholar 

  46. Vessally E, Dehbandi B, Edjlali L (2016) DFT study on the structural and electronic properties of Pt–doped boron nitride nanotubes. Russ J Phys Chem A 90:1217

    CAS  Google Scholar 

  47. Foster JP, Weinhold F (1980) Natural hybrid orbitals natural hybrid orbitals. J Am Chem Soc 102:7211

    CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, AleLaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) GAUSSIAN 09, Revision A.02. Gaussian Inc, Wallingford CT

    Google Scholar 

  49. Flükiger P, Lüthi HP, Portmann S (2000) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, Switzerland

    Google Scholar 

  50. O'Boyle NM, Tenderholt AL, Langner KM (2008) Software news and updates cclib : a library for package–independent computational chemistry algorithms. J Comput Chem 29:839

    CAS  PubMed  Google Scholar 

  51. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801

    CAS  Google Scholar 

  52. Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104

    Google Scholar 

  53. Parr RG, Szentṕaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922

    CAS  Google Scholar 

  54. Baierle RJ, Schmidt TM, Fazzio A (2007) Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. Solid State Commun 142:49

    CAS  Google Scholar 

  55. Esrafili MD, Saeidi N (2015) Si–embedded boron-nitride nanotubes as an efficient and metal-free catalyst for NO oxidation. Superlattice Microst 81:7

    CAS  Google Scholar 

  56. Tontapha S, Ruangpornvisuti V, Wanno B (2013) Density functional investigation of CO adsorption on Ni-doped single-walled armchair (5,5) boron nitride nanotubes. J Mol Model 19:239

    CAS  PubMed  Google Scholar 

  57. Arenal R, Ferrari AC, Reich S, Wirtz L, Mevellec JY, Lefrant S, Rubio A, Loiseau A (2006) Raman spectroscopy of single–wall boron nitride nanotubes. Nano Lett 6:1812

    CAS  PubMed  Google Scholar 

  58. Dong Q, Li XM, Tian WQ, Huang XR, Sun CC (2010) Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes. J Mol Struct 948:83

    CAS  Google Scholar 

Download references

Acknowledgments

The authors greatfully acknowledge the Supramolecular Chemistry Research Unit (SCRU), Department of Chemistry, Faculty of Science, Mahasarakham University and the Computational Chemistry Center for Nanotechnology (CCCN), Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University for the facilities provided.

Funding

This study received partial financial support from the Center of Excellence for Innovation in Chemistry (PERCH−CIC), Department of Chemistry, Faculty of Science, Mahasarakham University, and Rajabhat Buriram University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banchob Wanno.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 12584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phalinyot, S., Tabtimsai, C. & Wanno, B. Nitrogen monoxide storage and sensing applications of transition metal–doped boron nitride nanotubes: a DFT investigation. Struct Chem 30, 2135–2149 (2019). https://doi.org/10.1007/s11224-019-01339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01339-4

Keywords

Navigation