Skip to main content

Advertisement

Log in

The reaction mechanism study on the decarbonylation of 2-methyl-2-propenal assisted by hydrogen chloride, water, or sulfur acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The catalytic decarbonylation reaction mechanisms of 2-methyl-2-propenal in the presence of hydrogen chloride (HCl), water (H2O), or sulfuric acid (H2SO4) have been investigated theoretically for the first time. Both concerted and stepwise mechanisms have been considered. Compared with uncatalyzed reaction, the transition state energy is decreased by 90.46, 26.35, or 146.74 kJ/mol when the reaction is carried out with HCl, H2O, or H2SO4 as a catalyst, respectively. Our calculations demonstrate that the presence of HCl can reduce the transition state energy dramatically and make the decarbonylation of 2-methyl-2-propenal to be carried out at much lower temperatures, which is consistent with the experimental result. Moreover, the lowest activation energy assisted by H2SO4 suggests that H2SO4 may have better catalytic ability than that of HCl for the decarbonylation of 2-methyl-2-propenal, and our calculational results may be useful for future experimental studies on the title reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klein R, Scheer MD, Schoen LJ (1956). J. Am. Chem. Soc. 78:50–52

    CAS  Google Scholar 

  2. Schecker HG, Jost W (1969). Ber. Bunsenges. Phys. Chem. 73:521–526

    CAS  Google Scholar 

  3. Chen CJ, McKenney DJ (1972). Can. J. Chem. 50:992–998

    CAS  Google Scholar 

  4. Freeman JR, Danby JC, Hinshelwood CN (1958). Proc. Roy. Soc. London, Ser. A 245:456–469

    CAS  Google Scholar 

  5. Ho SK (1963). Proc. Roy. Soc. London, Ser. A 276:278–292

    CAS  Google Scholar 

  6. Trenwith AB (1963). J. Chem. Soc.:4426–4443

  7. Dexter RW, Trenwith AB (1964). J. Chem. Soc.:5459–5464

  8. Eusuf M, Laidler KJ (1964). Can. J. Chem. 42:1851–1860

    CAS  Google Scholar 

  9. Imai N, Toyama O (1967). Bull. Chem. Soc. Jpn. 40:81–94

    CAS  Google Scholar 

  10. Laidler KJ, Lui MTH (1967). Proc. R. Soc. London, Ser. A 297:365–375

    CAS  Google Scholar 

  11. Liu MTH (1968). Can. J. Chem. 46:479–490

    CAS  Google Scholar 

  12. Bardi I, Márta F (1973). Acta. Phys. Chem. 19:227–244

    CAS  Google Scholar 

  13. Bardi I, Márta F (1974). Acta. Phys. Chem. 20:47–65

    CAS  Google Scholar 

  14. Knewstubb PF (1989). J. Chem. Soc. Faraday Trans. 2(85):671–679

    Google Scholar 

  15. Szabó ZG, Márta F (1961). J. Am. Chem. Soc. 83:768–773

    Google Scholar 

  16. Volman DH, Brinton RK (1954). J. Chem. Phys. 22:929–939

    CAS  Google Scholar 

  17. Laidler KJ, Eusuf M (1965). Can. J. Chem. 43:268–277

    CAS  Google Scholar 

  18. Vasiliou A, Kim J, Ormond T, Piech K, Urness K, Scheer A, Robichaud D, Mukarakate C, Nimlos M, Daily J, Guan Q, Carstensen H, Ellison G (2013). J. Chem. Phys. 139:104310–114311

    PubMed  Google Scholar 

  19. Rosado-Reyes CM, Tsang W (2014). Int. J. Chem. Kinet. 46:285–293

    CAS  Google Scholar 

  20. Smith RE, Hinshelwood CN (1940). Proc. Roy. Soc. London, Ser. A 175:131–142

    CAS  Google Scholar 

  21. Smith RE, Hinshelwood CN (1942). Proc. Roy. Soc. London, Ser A 180:253–256

    Google Scholar 

  22. Ingold KU, Lossing FP (1953). Can. J. Chem. 31:30–41

    CAS  Google Scholar 

  23. Smith RE (1940). Trans. Faraday. Soc. 2 36:983–987

    CAS  Google Scholar 

  24. Grela MA, Colussi AJ (1986). J. Phys. Chem. 90:434–437

    CAS  Google Scholar 

  25. Crawford RJ, Lutener S, Tokunaga H (1977). Can. J. Chem. 55:3951–3954

    CAS  Google Scholar 

  26. Chabán OY, Domínguez RM, Herize A, Tosta M, Cuenca A, Chuchani G (2007). J. Phys. Org. Chem. 20:307–312

    Google Scholar 

  27. Ruiz P, Castro M, Lopez S, Zapata Á, Quijano J, Notario R (2016). Struct. Chem. 27:1373–1381

    CAS  Google Scholar 

  28. Julioa LL, Lezamaa J, Maldonadoa A, Moraa JR, Chuchania G (2014). J. Phys. Org. Chem. 27:450–455

    Google Scholar 

  29. Julioa LL, Moraa JR, Maldonadoa A, Chuchania G (2015). J. Phys. Org. Chem. 28:261–265

    Google Scholar 

  30. Erastova V, Rodríguez-Otero J, Cabaleiro-Lago EM, Peña-Gallego Á (2011). J. Mol. Model. 17:21–26

    CAS  PubMed  Google Scholar 

  31. Teixeira-Dias JJC, Furlani TR, Shores KS, Garvey JF (2003). Phys. Chem. Chem. Phys. 5:5063–5069

    CAS  Google Scholar 

  32. Takahashi K, Kramer ZC, Vaida V, Skodje RT (2007). Phys. Chem. Chem. Phys. 9:3864–3871

    CAS  PubMed  Google Scholar 

  33. Buszek RJ, Francisco JS (2009). J. Phys. Chem. A 113:5333–5337

    CAS  PubMed  Google Scholar 

  34. Tavakol H (2011). Struct. Chem. 22:1165–1177

    CAS  Google Scholar 

  35. Valadbeigi Y, Farrokhpour H (2015). Struct. Chem. 26:539–545

    CAS  Google Scholar 

  36. Buszek RJ, Sinha A, Francisco JS (2011). J. Am. Chem. Soc. 133:2013–2015

    CAS  PubMed  Google Scholar 

  37. Torrent-Sucarrat M, Francisco JS, Anglada JM (2012). J. Am. Chem. Soc. 134:20632–20644

    CAS  PubMed  Google Scholar 

  38. Elm J, Bilde M, Mikkelsen KV (2013). J. Phys. Chem. A 117:6695–6701

    CAS  PubMed  Google Scholar 

  39. Zhang WC, Du BN, Qin ZL (2014). J. Phys. Chem. A 118:4797–4807

    CAS  PubMed  Google Scholar 

  40. Karton A (2014). Chem. Phys. Lett. 592:330–333

    CAS  Google Scholar 

  41. Sarrami F, Mackenzie-Rae FA, Karton A (2018). Int. J. Quantum Chem. 118:25599–25608

    Google Scholar 

  42. Gonzalez C, Schlegel HB (1989). J. Chem. Phys. 90:2154–2161

    CAS  Google Scholar 

  43. Gonzalez C, Schlegel HB (1990). J. Phys. Chem. 94:5523–5527

    CAS  Google Scholar 

  44. Pople JA, Head-Gordon M, Raghavachari K (1987). J. Chem. Phys. 87:5968–5975

    CAS  Google Scholar 

  45. Merrick JP, Moran D, Radom L (2007). J. Phys. Chem. A 111:11683–11700

    CAS  PubMed  Google Scholar 

  46. Lee TJ, Taylor PR (1989). Int. J. Quant. Chem. Symp. 23:199–207

    CAS  Google Scholar 

  47. Rienstra-Kiracofe JC, Allen WD, Schaefer III HF (2000). J. Phys. Chem. A 104:9823–9840

    CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  49. Luchinskii GP (1956). Zh. Fiz. Khim. 30:96–97

    Google Scholar 

  50. Myers RT (1983). J. Chem. Educ. 60:1017–1018

    CAS  Google Scholar 

Download references

Funding

This work is jointly supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (contract grant number 10KJB150017), Doctoral Scientific Research Foundation of Jiangsu Normal University (contract grant number: 13XLR003), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 9533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Zhang, W. The reaction mechanism study on the decarbonylation of 2-methyl-2-propenal assisted by hydrogen chloride, water, or sulfur acid. Struct Chem 30, 2271–2277 (2019). https://doi.org/10.1007/s11224-019-01338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01338-5

Keywords

Navigation