Skip to main content
Log in

Hydrogen bonding network in a chiral alcohol: (1R,2S,5R)-(−)-menthol. Conformational preference studied by IR–Raman–VCD spectroscopies and quantum chemical calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A study of the molecular structure of (1R,2S,5R)-(−)-menthol and the hydrogen bond networks formed by this species in solution is carried out. Molecular structures of monomers and H-bonded dimers and trimers of the title compound are optimized using quantum chemical calculations in the isolated molecule approach. In addition, IR, Raman and VCD techniques are used to study CCl4 solutions and thin films of the target compound. Their corresponding vibrational spectra are then analysed, both theoretically (HF and DFT) and experimentally, to characterize the different monomers (rotamers) and H-bonded oligomer species in menthol solutions as a function of the concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wagner KH, Elmadfa I (2003) Ann Nutr Metab 47:95

    Article  CAS  Google Scholar 

  2. Dembitsky VM (2006) Lipids 41:1

    Article  CAS  Google Scholar 

  3. Eccles R (1994) J Pharm Pharmacol 46:618

    Article  CAS  Google Scholar 

  4. Galeottia N, Mannellia LDC, Mazzantib G, Bartolinia A, Ghelardini C (2002) Neurosci Lett 322:145

    Article  Google Scholar 

  5. Braina KR, Greena DM, Dykesb PJ, Marksb R, Bola TS (2006) Skin Pharmacol Physiol 19:17

    Article  Google Scholar 

  6. Caira MR, Griffith VJ, Nassimbeni LR, Van Oudtshoorn B (1996) Supramol Chem 7:119

    Article  CAS  Google Scholar 

  7. Trujillo M, Morales EQ, Vazquez JT (1994) J Org Chem 59:6637

    Article  CAS  Google Scholar 

  8. Parimoo P, Bharathi A, Mamatha D (1996) Asian J Chem 8:247

    CAS  Google Scholar 

  9. Albrecht M, Will J, Suhm MA (2010) Angew Chem Int Ed 49:6203

    Article  CAS  Google Scholar 

  10. Nafie LA, Dukor RK, Roy JR, Rilling A, Cao X, Buijs H (2003) Appl Spectrosc 57:1245

    Article  CAS  Google Scholar 

  11. Cao X, Shah RD, Dukor RK, Guo C, Freedman TB, Nafie LA (2004) Appl Spectrosc 58:1057

    Article  CAS  Google Scholar 

  12. Laux L, Pultz V, Abbate S, Havel HA, Overend J, Moscowitz A (1982) J Am Chem Soc 104:4276

    Article  CAS  Google Scholar 

  13. Abbate S, Longhi G, Ricard L, Bertucci C, Rosini C, Salvador P, Moscowitz A (1989) J Am Chem Soc 111:836

    Article  CAS  Google Scholar 

  14. Castiglioni E, Lebon F, Longhi G, Abbate S (2002) Enantiomer 7:161

    Article  CAS  Google Scholar 

  15. McCann JL, Rauk A, Wieser H (1998) Can J Chem 76:274

    Article  CAS  Google Scholar 

  16. Mccann JL, Rauk A, Wieser H (1997) J Mol Struct 408(409):417

    Article  Google Scholar 

  17. Barron LD, Hecht L, Blyth SM (1989) Spectrochimica Acta A 45:375

    Article  Google Scholar 

  18. Coleman WM, Gordon BM, Lawrence BM (1989) Appl Spectrosc 43:298

    Article  CAS  Google Scholar 

  19. Galisteo D, González-Vadillo ME, López Sastre JA, Martínez García MH, Rodríguez Amo JF (1994) J Mol Struct 326:239

    Article  CAS  Google Scholar 

  20. Lassègues JC, Lascombe J (1982) Vibrational spectra of gaseous hydrogen-bonded compounds. In: Durig JE (ed) Vibrational spectra and structure, Chap. 2. Elsevier, Amsterdam

    Google Scholar 

  21. Zeegers-Huyskens T (1991) Experimental vibrational characteristics of the hydrogen bond. In: Huyskens PL, Luck WAP (eds) Intramolecular forces. An introduction to modern methods and results, Chap. 2. Springer, Berlin

    Google Scholar 

  22. Tuma C, Boese AD, Handy NC (1999) Phys Chem Chem Phys 1:3939

    Article  CAS  Google Scholar 

  23. Del Bene JE, Jordan MJT (1999) Int Rev Phys Chem 18:119

    Article  Google Scholar 

  24. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press Inc., Oxford

    Google Scholar 

  25. Ignatyev IS, Partal F, López González JJ (2002) J Phys Chem A 106:11644

    Article  CAS  Google Scholar 

  26. Xiaojing W, Yuanyuan C, Toshio Y (2007) J Mol Spectrosc 246:187

    Article  Google Scholar 

  27. Shanmugam G, Polavarapu PL (2005) Appl Spectrosc 59:673

    Article  CAS  Google Scholar 

  28. Deplazes E, van Bronswijk W, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2008) Theor Chem Acc 119:155

    Article  CAS  Google Scholar 

  29. Frisch MJ et al (2004) GAUSSIAN03, Revision E.01. Gaussian, Inc., Wallingford

    Google Scholar 

  30. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Chem Phys Lett 252:211

    Article  CAS  Google Scholar 

  31. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  32. Fogarasi G, Pulay P (1985) Vibrational spectra and structure. In: Durig JE (ed) Ab initio calculation of force fields and vibrational spectra, Chap. 3. Elsevier, Amsterdam

    Google Scholar 

  33. Sundius T (1990) J Mol Struct 218:321

    Article  CAS  Google Scholar 

  34. Sundius T (2002) Vib Spectrosc 29:89

    Article  CAS  Google Scholar 

  35. Jasco Spectra Manager for Windows™

  36. Larsen RW, Suhm MA (2010) Phys Chem Chem Phys 12:8152

    Article  Google Scholar 

  37. Partal Ureña F, Avilés Moreno JR, López González JJ (2008) Phys Chem A 112:7887

    Article  Google Scholar 

  38. Avilés Moreno JR, Partal Ureña F, López González JJ (2009) Phys Chem Chem Phys 11:2459

    Article  Google Scholar 

  39. Partal Ureña F, Avilés Moreno JR, López González JJ (2009) Tetrahedron Asymmetry 20:89

    Article  Google Scholar 

  40. Avilés Moreno JR, Partal Ureña F, López González JJ (2009) Vib Spectrosc 51:318

    Article  Google Scholar 

  41. Avilés Moreno JR, Partal Ureña F, López González JJ (2011) J Struct Chem 1:67

    Google Scholar 

  42. Avilés Moreno JR, Ureña Horno E, Partal Ureña F, López González JJ (2011) Spectrochimica Acta A 79:767

    Article  Google Scholar 

  43. NIST Standard Reference Database 101; Computational Chemistry Comparison and Benchmark DataBase: http://cccbdb.nist.gov/vibscalejust.asp

Download references

Acknowledgments

This work was supported by the Junta de Andalucía (project P08-FQM-04096). The authors thank the University of Jaén for continuing financial support and its CICT for instrumental facilities. Juan Ramón Avilés Moreno expresses thanks to the Junta de Andalucía for a Post-Doc grant. We are grateful to a native English Speaker (Jean Louise Sanders) for reviewing the grammar. The authors are also grateful to D. Francisco Hermoso Torres for his help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ramón Avilés Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3733 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avilés Moreno, J.R., Partal Ureña, F. & López González, J.J. Hydrogen bonding network in a chiral alcohol: (1R,2S,5R)-(−)-menthol. Conformational preference studied by IR–Raman–VCD spectroscopies and quantum chemical calculations. Struct Chem 24, 671–680 (2013). https://doi.org/10.1007/s11224-012-0118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0118-8

Keywords

Navigation