Skip to main content
Log in

Borazine: to be or not to be aromatic

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Aromaticity of borazine, which has been subject of controversial discussions, is addressed. Beside a short review on aromaticity of borazine we report a detailed analysis of two molecular fields, the induced magnetic field (B ind) and the electron localization function (ELF). The induced magnetic field of borazine shows a long-range shielding cone perpendicular to the molecular plane, as in benzene, but lower in magnitude. Contrary to benzene, borazine shows two weakly paratropic regions, one of them inside the ring, and the second one enveloping the boron atoms. It is necessary to separate σ and π contributions to identify whether borazine exhibits π-aromatic character comparable to benzene. Nucleus-independent chemical shift (NICS) isolines show that the σ electrons are much stronger localized than π electrons, their local paramagnetic contributions generate a short-range response and a paratropic (deshielding) region in the ring center (similar to an anti-aromatic response). Three regions can be identified as chemically meaningful domains exhibiting an internally strong electron delocalization (ELF = 0.823). Borazine may be described as a π aromatic compound, but it is not a globally aromatic species, as the electronic system is not as delocalized as in benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stock A, Pohland E (1926) Chem Ber 59B:2215

    CAS  Google Scholar 

  2. In this molecule, the B-N bond length is intermediate between single and double bond B–N lengths. In borazines, B-N distances are in the range of 1.42–1.44 Å

  3. Wiberg E (1948) Natunviss 35:182

    CAS  Google Scholar 

  4. Chiavarino B, Crestoni ME, Fornarini S (1999) J Am Chem Soc 121:2619

    Article  CAS  Google Scholar 

  5. Chiavarino B, Crestoni ME, Di Marzio A, Fornarini S, Rosi M (1999) J Am Chem Soc 121:11204

    Article  CAS  Google Scholar 

  6. Kiran B, Phukan AK, Jemmis ED (2001) Inorg Chem 40:3615

    Article  CAS  Google Scholar 

  7. Timoshkin AY, Frenking G (2003) Inorg Chem 42:60

    Article  CAS  Google Scholar 

  8. Cyranski MK (2005) Chem Rev 105:3773

    Article  CAS  Google Scholar 

  9. Schleyer PvR, Puhlhofer F (2002) Org Lett 4:2873

    Article  Google Scholar 

  10. Fink WH, Richards JC (1991) J Am Chem Soc 113:3393

    Article  CAS  Google Scholar 

  11. Schleyer PV, Jiao HJ, Hommes N, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669

    Article  CAS  Google Scholar 

  12. Benker D, Klapotke TM, Kuhn G, Li JB, Miller C (2005) Heteroatom Chem 16:311

    Article  CAS  Google Scholar 

  13. Fernandez I, Frenking G (2007) Faraday Discuss 135:403

    Article  CAS  Google Scholar 

  14. Fowler PW, Steiner E (1997) J Phys Chem A 101:1409

    Article  CAS  Google Scholar 

  15. Jemmis ED, Kiran B (1998) Inorg Chem 37:2110

    Article  CAS  Google Scholar 

  16. Schleyer PV, Jiao HJ (1996) Pure Appl Chem 68:209

    Article  CAS  Google Scholar 

  17. Steiner E, Soncini A, Fowler PW (2006) J Phys Chem A 110:12882

    Article  CAS  Google Scholar 

  18. Soncini A, Fowler PW, Lazzeretti P, Zanasi R (2005) Chem Phys Lett 401:164

    Article  CAS  Google Scholar 

  19. Boyd RJ, Choi SC, Hale CC (1984) Chem Phys Lett 112:136

    Article  CAS  Google Scholar 

  20. Jug K (1983) J Org Chem 48:1344

    Article  CAS  Google Scholar 

  21. Madura ID, Krygowski TM, Cyranski MK (1998) Tetrahedron 54:14913

    Article  CAS  Google Scholar 

  22. Phukan AK, Kalagi RP, Gadre SR, Jemmis ED (2004) Inorg Chem 43:5824

    Article  CAS  Google Scholar 

  23. Merino G, Heine T, Seifert G (2004) Chem Eur J 10:4367

    Article  CAS  Google Scholar 

  24. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  25. Heine T, Islas R, Merino G (2007) J Comput Chem 28:302

    Article  CAS  Google Scholar 

  26. Santos JC, Tiznado W, Contreras R, Fuentealba P (2004) J Chem Phys 120:1670

    Article  CAS  Google Scholar 

  27. Merino G, Vela A, Heine T (2005) Chem Rev 105:3812

    Article  CAS  Google Scholar 

  28. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andreas JL, Head-Gordon M, Reploge ES, Pople JA (1998) Gaussian 98, Gaussian 98 revision A7, Gaussian Inc, Pittsburg, PA, 1998

  32. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  33. Kutzelnigg W, Fleischer U, Schindler M (1990) The IGLO-method: ab initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities, vol 23. Springer-Verlag, Heidelberg

    Google Scholar 

  34. Kutzelnigg W (1980) Isr J Chem 19:193

    CAS  Google Scholar 

  35. Koster AM, Flores R, Geudtner G, Goursot A, Heine T, Patchkovskii S, Reveles JU, Vela A, Salahub DR, demon (2004) NRC, Canada

  36. Malkin VG, Malkina OL, Reviakine R, Schimmelpfennig B, Arbuznikov V, Kaupp M (2001) MAG-ReSpect 1.0, MAG-ReSpect 1.0

  37. Pipek J, Mezey PG (1989) J Chem Phys 90:4916

    Article  CAS  Google Scholar 

  38. Schleyer PvR, Jiao HF, Hommes NJRV, Malkin VG, Malkina O (1997) J Am Chem Soc 119:12669

    Article  Google Scholar 

  39. Corminboeuf C, Heine T, Weber J (2003) Phys Chem Chem Phys 5:246

    Article  CAS  Google Scholar 

  40. Heine T, Schleyer PvR, Corminboeuf C, Seifert G, Reviakine R, Weber J (2003) J Phys Chem A 107:6470

    Article  CAS  Google Scholar 

  41. Ozell B, Camarero R, Garon A, Guibault F (1995) Finite Elements Design 19:295

    Article  Google Scholar 

  42. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMoD package. Universite Pierre et Marie Curie, Paris

    Google Scholar 

  43. Portmann S, Luthi HP (2000) Chimia 54: 766

    CAS  Google Scholar 

  44. Merino G, Mendez-Rojas MA, Beltran HI, Corminboeuf C, Heine T, Vela A (2004) J Am Chem Soc 126:16160

    Article  CAS  Google Scholar 

  45. Perez N, Heine T, Barthel R, Seifert G, Vela A, Mendez-Rojas MA, Merino G (2005) Organ Lett 7:1509

    Article  CAS  Google Scholar 

  46. Islas R, Heine T, Merino G (2007) J Chem Theory Comput 3:775

    Article  CAS  Google Scholar 

  47. Savin A, Becke AD, Flad J, Nesper R, Preuss H, Vonschnering HG (1991) Angew Chem-Int Edit Engl 30:409

    Article  Google Scholar 

  48. Savin A, Nesper R, Wengert S, Fassler TF (1997) Angew Chem-Int Edit Engl 36:1809

    Google Scholar 

  49. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  50. Fuentealba P, Chamorro E, Santos JC (2007) In: Toro-Labbe A (ed) Theoretical Aspects of Chemical Reactivity, vol 19. Elsevier, Amsterdam, p 57

    Google Scholar 

  51. Chesnut DB, Bartolotti LJ (2000) Chem Phys 257:175

    Article  CAS  Google Scholar 

  52. Fuster F, Sevin A, Silvi B (2000) J Phys Chem A 104:852

    Article  CAS  Google Scholar 

  53. Cardenas C, Chamorro E, Notario R (2005) J Phys Chem A 109:4352

    Article  CAS  Google Scholar 

  54. Chamorro EE, Notario R (2004) J Phys Chem A 108:4099

    Article  CAS  Google Scholar 

  55. Chamorro E (2003) J Chem Phys 118:8687

    Article  CAS  Google Scholar 

  56. Melin J, Fuentealba P (2003) Int J Quantum Chem 92:381

    Article  CAS  Google Scholar 

  57. Santos JC, Andres J, Aizman A, Fuentealba P (2005) J Chem Theor Comput 1:83

    Article  Google Scholar 

  58. Heine T, Corminboeuf C, Grossmann G, Haeberlen U (2006) Angew Chem-Int Edit 45:7292

    Article  CAS  Google Scholar 

  59. Heine T, Zhechkov L, Seifert G (2004) Phys Chem Chem Phys 6:980

    Article  CAS  Google Scholar 

  60. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842

    Article  CAS  Google Scholar 

  61. Pelloni S, Ligabue A, Lazzeretti P (2004) Organ Lett 6:4451

    Article  CAS  Google Scholar 

  62. Viglione RG, Zanasi R, Lazzeretti P (2004) Organ Lett 6:2265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by grants from DINPO-UGTO, and the Deutsche Forschungsgemeinschaft (DFG). RI gratefully acknowledges a Conacyt Ph.D. fellowship. JCS and EC thank Fondecyt (Chile), grants 11060197 and 1070378, and the Millennium Nucleus for Applied Quantum Mechanics and Computational Chemistry (Mideplan-Conicyt, Chile), grant P02-004-F for continuous support. JCS and EC also thank to UNAB by support through the DI 22-05/R and 21-06/R research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Merino.

Additional information

Dedicated to the 70th birthday of Prof. Tadeusz Marek Krygowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islas, R., Chamorro, E., Robles, J. et al. Borazine: to be or not to be aromatic. Struct Chem 18, 833–839 (2007). https://doi.org/10.1007/s11224-007-9229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9229-z

Keywords

Navigation