Skip to main content

Advertisement

Log in

Estimation of relative risk for events on a linear network

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Motivated by the study of traffic accidents on a road network, we discuss the estimation of the relative risk, the ratio of rates of occurrence of different types of events occurring on a network of lines. Methods developed for two-dimensional spatial point patterns can be adapted to a linear network, but their requirements and performance are very different on a network. Computation is slow and we introduce new techniques to accelerate it. Intensities (occurrence rates) are estimated by kernel smoothing using the heat kernel on the network. The main methodological problem is bandwidth selection. Binary regression methods, such as likelihood cross-validation and least squares cross-validation, perform tolerably well in our simulation experiments, but the Kelsall–Diggle density-ratio cross-validation method does not. We find a theoretical explanation, and propose a modification of the Kelsall–Diggle method which has better performance. The methods are applied to traffic accidents in a regional city, and to protrusions on the dendritic tree of a neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramson, I.: On bandwidth estimation in kernel estimates: a square root law. Ann. Stat. 10(4), 1217–1223 (1982)

    MATH  Google Scholar 

  • Ang, Q., Baddeley, A., Nair, G.: Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scand. J. Stat. 39, 591–617 (2012)

    MathSciNet  MATH  Google Scholar 

  • Azzalini, A., Bowman, A., Haerdle, W.: On the use of nonparametric regression for model checking. Biometrika 76, 1–11 (1989)

    MathSciNet  MATH  Google Scholar 

  • Baddeley, A., Jammalamadaka, A., Nair, G.: Multitype point process analysis of spines on the dendrite network of a neuron. Appl. Stat. (J. R. Stat. Soc. Ser. C) 63(5), 673–694 (2014). https://doi.org/10.1111/rssc.12054

    Article  MathSciNet  Google Scholar 

  • Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC, London (2015)

    MATH  Google Scholar 

  • Borruso, G.: Network density and the delimitation of urban areas. Trans. GIS 7, 177–191 (2003)

    Google Scholar 

  • Borruso, G.: Network density estimation: analysis of point patterns over a network. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H., Mun, Y., Taniar, D., Tan, C. (eds.) Computational Science and its Applications, ICCSA 2005. Lecture Notes in Computer Science, vol. 3482, pp. 126–132. Springer, Berlin (2005)

    Google Scholar 

  • Borruso, G.: Network density estimation: a GIS approach for analysing point patterns in a network space. Trans. GIS 12, 377–402 (2008)

    Google Scholar 

  • Botev, Z., Grotowski, J., Kroese, D.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    MathSciNet  MATH  Google Scholar 

  • Bowman, A.: An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71, 353–360 (1984)

    MathSciNet  Google Scholar 

  • Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  • Cao, R., Cuevas, A., Gonzáles-Manteiga, W.: A comparative study of several smoothing methods in density estimation. Comput. Stat. Data Anal. 17, 153–176 (1994)

    MATH  Google Scholar 

  • Chaudhuri, P., Marron, J.: Scale space view of curve estimation. Ann. Stat. 28, 408–428 (2000)

    MathSciNet  MATH  Google Scholar 

  • Clark, A.B., Lawson, A.B.: An evaluation of non-parametric relative risk estimators for disease maps. Comput. Stat. Data Anal. 47, 63–78 (2004)

    MathSciNet  MATH  Google Scholar 

  • Davies, T., Baddeley, A.: Fast computation of spatially adaptive kernel estimates. Stat. Comput. 28, 937–956 (2018)

    MathSciNet  MATH  Google Scholar 

  • Davies, T.M., Lawson, A.B.: An evaluation of likelihood-based bandwidth selectors for spatial and spatiotemporal kernel estimates. J. Statist. Comp. Simul. 89, 1131–1152 (2019)

    MathSciNet  Google Scholar 

  • Davies, T.M., Hazelton, M.L., Marshall, J.C.: sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R. J. Stat. Softw. 39(1), 1–14 (2011)

    Google Scholar 

  • Davies, T., Jones, K., Hazelton, M.: Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function. Comput. Stat. Data Anal. 101, 12–28 (2016)

    MathSciNet  MATH  Google Scholar 

  • Davies, T., Marshall, J., Hazelton, M.: Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. Stat. Med. 37, 1191–1221 (2018)

    MathSciNet  Google Scholar 

  • Diggle, P.: Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, 3rd edn. Chapman and Hall/CRC, Boca Raton (2014)

    MATH  Google Scholar 

  • Diggle, P., Marron, J.: Equivalence of smoothing parameter selectors in density and intensity estimation. J. Am. Stat. Assoc. 83, 793–800 (1988)

    MathSciNet  MATH  Google Scholar 

  • Diggle, P., Zheng, P., Durr, P.: Non-parametric estimation of spatial segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK. Appl. Stat. 54, 645–658 (2005)

    MATH  Google Scholar 

  • Downs, J., Horner, M.: Characterising linear point patterns. In: Winstanley A (ed.) Proceedings of the GIScience Research UK Conference (GISRUK), Maynooth, Ireland, National University of Ireland Maynooth, County Kildare, Ireland, pp. 421–424 (2007a)

  • Downs, J., Horner, M.: Network-based kernel density estimation for home range analysis. In: Proceedings of the 9th International Conference on Geocomputation, Maynooth, Ireland (2007b)

  • Downs, J., Horner, M.: Spatially modelling pathways of migratory birds for nature reserve site selection. Int. J. Geogr. Inf. Sci. 22(6), 687–702 (2008)

    Google Scholar 

  • Duong, T., Hazelton, M.: Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametric Stat. 15(1), 17–30 (2003)

    MathSciNet  MATH  Google Scholar 

  • Duong, T., Hazelton, M.: Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand. J. Stat. 32, 485–506 (2005)

    MathSciNet  MATH  Google Scholar 

  • Haerdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  • Hall, P., Marron, J.: Local minima in cross-validation functions. J. R. Stat. Soc. Ser. B 53, 245–252 (1991)

    MathSciNet  MATH  Google Scholar 

  • Hall, P., Marron, J., Park, B.: Smoothed cross-validation. Probab. Theory Relat. Fields 92, 1–20 (1992)

    MathSciNet  MATH  Google Scholar 

  • Hazelton, M., Davies, T.: Inference based on kernel estimates of the relative risk function in geographical epidemiology. Biom. J. 51, 98–109 (2009)

    MathSciNet  Google Scholar 

  • Hu, S., Poskitt, D.S., Zhang, X.: Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions. Comput. Stat. Data Anal. 56, 732–740 (2012)

    MathSciNet  MATH  Google Scholar 

  • Jammalamadaka, A., Banerjee, S., Manjunath, B., Kosik, K.: Statistical analysis of dendritic spine distributions in rat hippocampal cultures. BMC Bioinform. 14, 287 (2013)

    Google Scholar 

  • Jones, M., Marron, J., Sheather, S.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kelsall, J., Diggle, P.: Kernel estimation of relative risk. Bernoulli 1, 3–16 (1995a)

    MathSciNet  MATH  Google Scholar 

  • Kelsall, J., Diggle, P.: Non-parametric estimation of spatial variation in relative risk. Stat. Med. 14, 2335–2342 (1995b)

    Google Scholar 

  • Kelsall, J., Diggle, P.: Spatial variation in risk of disease: a nonparametric binary regression approach. Appl. Stat. 47, 559–573 (1998)

    MATH  Google Scholar 

  • Kostrykin, V., Potthoff, J., Schrader, R.: Heat kernels on metric graphs and a trace formula. In: Germinet, F., Hislop, P. (eds.) Adventures in Mathematical Physics, Contemporary Mathematics, vol. 447, pp. 175–198. American Mathematical Society, Providence (2007)

    Google Scholar 

  • Loader, C.: Bandwidth selection: classical or plug-in? Ann. Stat. 27(2), 415–438 (1999a)

    MathSciNet  MATH  Google Scholar 

  • Loader, C.: Local Regression and Likelihood. Springer, New York (1999b)

    MATH  Google Scholar 

  • McSwiggan, G., Baddeley, A., Nair, G.: Kernel density estimation on a linear network. Scand. J. Stat. 44(2), 324–345 (2016)

    MathSciNet  MATH  Google Scholar 

  • Mecke, J.: Stationäre zufällige maße auf lokalkompakten abelschen gruppen. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 9, 36–58 (1967)

    MathSciNet  MATH  Google Scholar 

  • Okabe, A., Sugihara, K.: Spatial Analysis Along Networks. Wiley, New York (2012)

    MATH  Google Scholar 

  • Okabe, A., Satoh, T., Sugihara, K.: A kernel density estimation method for networks, its computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 23, 7–32 (2009)

    Google Scholar 

  • Rakshit, S., Davies, T., Moradi, M., McSwiggan, G., Nair, G., Mateu, J., Baddeley, A.: Fast kernel smoothing of point patterns on a large network using 2D convolution. Int. Stat. Rev. (2019). https://doi.org/10.1111/insr.12327. (in press)

    Article  Google Scholar 

  • Scott, D.: Multivariate Density Estimation. Theory, Practice and Visualization. Wiley, New York (1992)

    MATH  Google Scholar 

  • Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  • Sugihara, K., Satoh, T., Okabe, A.: (2010) Simple and unbiased kernel function for network analysis. In: International Symposium on Communication and Information Technologies (ISCIT 2010), pp 827–832. IEEE. https://doi.org/10.1109/ISCIT.2010.5665101

  • Terrell, G.: The maximal smoothing principle in density estimation. J. Am. Stat. Assoc. 85, 470–476 (1990)

    MathSciNet  Google Scholar 

  • Wand, M., Jones, M.: Kernel Smoothing. Chapman and Hall, London (1995)

    MATH  Google Scholar 

  • Xie, Z., Yan, J.: Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 32, 396–406 (2008)

    Google Scholar 

  • Yule, G.H.: Notes on the theory of association of attributes in statistics. Biometrika 2, 121–134 (1903)

    Google Scholar 

  • Zhang, X., King, M.L., Hyndman, R.J.: A Bayesian approach to bandwidth selection for multivariate kernel estimation. Comput. Stat. Data Anal. 50, 3009–3031 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dr Tilman Davies and the referees for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Baddeley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by the Australian Research Council, Discovery Grants DP130102322 and DP130104470.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McSwiggan, G., Baddeley, A. & Nair, G. Estimation of relative risk for events on a linear network. Stat Comput 30, 469–484 (2020). https://doi.org/10.1007/s11222-019-09889-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09889-7

Keywords

Navigation