Skip to main content
Log in

Sparse conformal predictors

SCP

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Conformal predictors, introduced by Vovk et al. (Algorithmic Learning in a Random World, Springer, New York, 2005), serve to build prediction intervals by exploiting a notion of conformity of the new data point with previously observed data. We propose a novel method for constructing prediction intervals for the response variable in multivariate linear models. The main emphasis is on sparse linear models, where only few of the covariates have significant influence on the response variable even if the total number of covariates is very large. Our approach is based on combining the principle of conformal prediction with the 1 penalized least squares estimator (LASSO). The resulting confidence set depends on a parameter ε>0 and has a coverage probability larger than or equal to 1−ε. The numerical experiments reported in the paper show that the length of the confidence set is small. Furthermore, as a by-product of the proposed approach, we provide a data-driven procedure for choosing the LASSO penalty. The selection power of the method is illustrated on simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bühlmann, P., Hothorn, T.: Twin boosting: improved feature selection and prediction. Stat. Comput. (2010, this issue)

  • Bunea, F., Tsybakov, A., Wegkamp, M.: Sparsity oracle inequalities for the Lasso. Electron. J. Stat. 1, 169–194 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Casella, G., Berger, R.L.: Statistical Inference. Duxbury, N. Scituate (2001)

    Google Scholar 

  • Chen, S.S., Donoho, D.L.: Atomic decomposition by basis pursuit. Technical Report (1995)

  • Chesneau, Ch., Hebiri, M.: Some theoretical results on the grouped variables Lasso. Math. Methods Stat. 17, 317–326 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Dalalyan, A., Tsybakov, A.: Aggregation by exponential weighting and sharp oracle inequalities. In: Learning Theory. Lecture Notes in Comput. Sci., vol. 4539, pp. 97–111. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Dalalyan, A., Tsybakov, A.: Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity. Mach. Learn. 72, 39–61 (2008)

    Article  Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression—with discussion. Ann. Stat. 32, 407–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1, 302–332 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Garrigues, P., El Ghaoui, L.: An homotopy algorithm for the lasso with online observations. In: Neural Information Processing Systems (Nips), vol. 21, pp. 489–496. MIT Press, Cambridge (2008)

    Google Scholar 

  • Györfi, L., Kohler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer, New York (2002)

    Google Scholar 

  • Hebiri, M.: Regularization with the smooth-lasso procedure. Technical Report (2008)

  • Huang, C., Cheang, G.L.H., Barron, A.: Risk of penalized least squares, greedy selection and l1 penalization for flexible function libraries. Preprint (2008)

  • Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007)

    Article  Google Scholar 

  • Knight, K., Fu, W.: Asymptotics for lasso-type estimators. Ann. Stat. 28, 1356–1378 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Langford, J., Li, L., Zhang, T.: Sparse online learning via truncated gradient. J. Mach. Learn. Res. 10, 777–801 (2009)

    MathSciNet  Google Scholar 

  • Meinshausen, N., Bühlmann, P.: High dimensional graphs and variable selection with the lasso. Ann. Stat. 34, 1436–1462 (2006)

    Article  MATH  Google Scholar 

  • Osborne, M., Presnell, B., Turlach, B.: On the LASSO and its dual. J. Comput. Graph. Stat. 9, 319–337 (2000a)

    Article  MathSciNet  Google Scholar 

  • Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20, 389–403 (2000b)

    Article  MATH  MathSciNet  Google Scholar 

  • Park, M.Y., Hastie, T.: L 1-regularization path algorithm for generalized linear models. J. R. Stat. Soc., Ser. B, Stat. Methodol. 69, 659–677 (2007)

    Article  MathSciNet  Google Scholar 

  • Rosset, S., Zhu, J.: Piecewise linear regularized solution paths. Ann. Stat. 35, 1012–1030 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 7, 1307–1330 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Shalev-Shwartz, S., Tewari, A.: Stochastic methods for 1 regularized loss minimization. In: Proceedings of the 26th International Conference on Machine Learning. Omnipress, Montreal (2009)

    Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  • Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc., Ser. B, Stat. Methodol. 67, 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Vapnik, V.: Statistical Learning Theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control. Wiley, New York (1998)

    Google Scholar 

  • Vovk, V.: Asymptotic optimality of transductive confidence machine. In: Algorithmic Learning Theory. Lecture Notes in Comput. Sci., vol. 2533, pp. 336–350. Springer, Berlin (2002a)

    Chapter  Google Scholar 

  • Vovk, V.: On-line confidence machines are well-calibrated. In: Proceedings of the Forty-Third Annual Symposium on Foundations of Computer Science, pp. 187–196. IEEE Computer Society, Los Alamitos (2002b)

    Google Scholar 

  • Vovk, V., Gammerman, A., Saunders, C.: Machine-learning applications of algorithmic randomness. In Proceedings of the 16th International Conference on Machine Learning, pp. 444–453. ICML (1999)

  • Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New York (2005)

    MATH  Google Scholar 

  • Vovk, V., Nouretdinov Ilia, G., Gammerman, A.: On-line predictive linear regression. Technical Report (2007)

  • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc., Ser. B, Stat. Methodol. 68, 49–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006)

    MathSciNet  Google Scholar 

  • Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)

    Article  MATH  Google Scholar 

  • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc., Ser. B, Stat. Methodol. 67, 301–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, H., Hastie, T., Tibshirani, R.: On the “Degrees of Freedom” of the lasso. Ann. Stat. 35, 2173–2192 (2007). URL citeseer.ist.psu.edu/766780.html

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hebiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebiri, M. Sparse conformal predictors. Stat Comput 20, 253–266 (2010). https://doi.org/10.1007/s11222-009-9167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-009-9167-2

Navigation