Skip to main content

Advertisement

Log in

Nanocomposite and nanostructured superhard Ti-Si-B-N coatings

  • Published:
Russian Physics Journal Aims and scope

Abstract

Electron microscopy, x-ray diffraction analysis, and micro-and nanohardness measurements were used to investigate the interrelations between the fine structure and the variations in strength properties of nanostructured and nanocomposite Ti-Si-B-N coatings with high oxygen and carbon contents. It has been shown that under the conditions of low-temperature (T = 200°C) coating deposition, a two-level grain structure forms with {200} texture and grains 0.1–0.3 µm in size fragmented into subgrains 15–20 nm in size. As the silicon content is increased, textureless coatings with the crystal phase grain size less than 15 nm and high amorphous component or coatings of amorphous-crystalline structure are produced. At coating deposition temperatures of 400–450°C, a nanocomposite structure with a grain size d = 10–15 nm and no texture is observed. For all test compositions and conditions of coating production, a Ti 1−x Si x N crystal phase with the lattice parameter a = (0.416–0.420) ± 0.001 nm has been detected. For optimum coating compositions and synthesis conditions, the hardness is over 40–50 GPa. It has been supposed that superhardness can be attained with multiphase grain-boundary interlayers of thickness more than 1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Morris, Material Science. Foundation, 2, 1–84 (1998).

    ADS  Google Scholar 

  2. M. A. Meyers, A. Mishra, and D. J. Benson, Progress of Material Science, 51, 427–556 (2006).

    Article  Google Scholar 

  3. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Intense Plastic Deformation [in Russian], Logos, Moscow (2000).

    Google Scholar 

  4. S. Veprek, J. Vac. Sci. Technol., 5, 2401–2420 (1999).

    ADS  Google Scholar 

  5. S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films, 476, 1–29 (2005).

    Article  Google Scholar 

  6. S. Veprek, M. Haussman, and S. Reiprich, J. Vac. Sci. Technol., 46, 46–51 (1996).

    ADS  Google Scholar 

  7. J. Musil, Surf. Coat. Technol., 125, 322–330 (2000).

    Article  Google Scholar 

  8. P. Karvankova, M. G. J. Veprek-Heijman, O. Zindulka, et al., Ibid., 163–164, 149–156 (2003).

    Article  Google Scholar 

  9. F. Vaz, L. Rebouta, Ph. Goudeau, et al., Ibid., 133–134, 307–313 (2000).

    Article  Google Scholar 

  10. H.-D. Männling, D. S. Patil, K. Moto, et al., 146–147, 263–267 (2001).

  11. P. Holubar, M. Jilek, and M. Sima, Ibid., 120–121, 184–188 (1999).

    Article  Google Scholar 

  12. S. Veprek and A. S. Argon, Ibid., 146–147, 175–182 (2001).

    Article  Google Scholar 

  13. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, Thin Solid Films, 415, 151–159 (2002).

    Article  Google Scholar 

  14. P. H. Mayrhofer, C. Mitterer, and J. Musil, Surf. Coat. Technol., 174–175, 725–731 (2003).

    Article  Google Scholar 

  15. J. Musil and H. Polakova, Ibid., 127, 99–106 (2000).

    Article  Google Scholar 

  16. J. Musil, P. Zeman, H. Hruby, and P. H. Mayrhofer, Ibid., 120–121, 179–183 (1999).

    Article  Google Scholar 

  17. P. Karvankova, H.-D. Männling, C. Eggs, and S. Veprek, Ibid., 146–147, 280–285 (2001).

    Article  Google Scholar 

  18. F. Vaz, L. Rebouta, Ph. Goudeau, et al., Thin Solid Films, 402, 195–202 (2002).

    Article  Google Scholar 

  19. P. Karvankova, M. G. J. Veprek-Heijman, M. F. Zawrah, and S. Verpek, Ibid., 467, 133–139 (2004).

    Article  Google Scholar 

  20. J. Dorfel, W. Osterle, J. Urban, and E. Bouzy, Surf. Coat. Technol., 111, 199–209 (1999).

    Article  Google Scholar 

  21. A. D. Korotaev, A. N. Tyumentsev, and V. F. Sukhovarov, Dispersion Hardening of Refractory Metals [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  22. V. Ch. Gonchikov, A. N. Tyumentsev, A. D. Korotaev, and Yu. P. Pinzhin, Fiz. Met. Metalloved., 63, 598–603 (1987).

    Google Scholar 

  23. A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, et al. Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 3–12 (1998).

  24. A. D. Korotaev, V. Yu. Moshkov, S. V. Ovchinnikov, et al., Fiz. Mezomekh., 8, 103–116 (2005).

    Google Scholar 

  25. V. M. Savostikov, D. P. Borisov, E. V. Gromyshev, and Yu. P. Pinzhin, Proc 7th Int. Conf. on Modification of Materials with Particles Beams and Plasma Flows, Tomsk, Russia (2004), pp. 485–488.

  26. D. P. Borisov, N. N. Koval, and P. M. Schanin, System for Production of Low-Temperature Gas-Discharge Plasmas, RF Patent No. 2116707, Byull. Izobr., No. 21 (1998).

  27. P. B. Hirsh, A. Howie, P. B. Nicholson, D. W. Pashiley, and M.J. Whelan, Electron Microscopy of Thin Crystals, Krieger, Malabar, FL, 1977.

    Google Scholar 

  28. R. de Wit, Linear Theory of Static Disclinations, in: Fundamental Aspects of Dislocation (ed. by J. A. Simmons, R. R. de Wit, and R. Bullough), Nat. Bur. Stand., US, Spec. Publ. 317, Vol. I (1970), pp. 651–673.

  29. F. V. Kiryukhantsev, D. V. Shtanskii, A. N. Sheveiko, et. al., Fiz. Met. Metalloved., 97, 98–103 (2004).

    Google Scholar 

  30. S. Verpek, P. Nesladek, A. Niederhofer, et al., Surf. Coat. Technol., 108–109, 138–147 (1998).

    Google Scholar 

  31. S. Christiansen, M. Albirecht, H. P. Strunk, and S. Veprek, J. Vac. Sci. Technol., B 16(1), 19–22 (1998).

    Google Scholar 

  32. S. Veprek, S. Mucherjee, P. Karvankova, et al., Thin Solid Films, 436, 220–231 (2003).

    Article  Google Scholar 

  33. A. D. Korotaev, A. N. Tyumentsev, Yu. P. Pinzhin, et al., Fiz. Mezomekh., 7, Special Issue, Part 2, 3–7 (2004).

    Google Scholar 

  34. P. Zeman, R. Cerstry, P. H. Mayrhofer, et al., Mater. Sci. Engrs., A 289, 189–197 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Korotaev.

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 13–23, October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotaev, A.D., Borisov, D.P., Moshkov, V.Y. et al. Nanocomposite and nanostructured superhard Ti-Si-B-N coatings. Russ Phys J 50, 969–979 (2007). https://doi.org/10.1007/s11182-007-0141-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-007-0141-1

Keywords

Navigation