Skip to main content
Log in

Particle size effect on the catalytic properties of zeolitic imidazolate frameworks

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Zeolitic imidazolate frameworks (ZIFs) possess unique structural, textural, and physico-chemical properties and, therefore, they are promising materials for the synthesis of catalysts. The presence of acidic and basic sites in the structure of ZIFs and the possibility of controlling their number and accessibility offer various ways of using ZIFs in acid-base catalysis. Domestic and foreign works devoted to the study of the catalytic properties of ZIFs in reactions of the acid-base type and published within the recent 15 years are reviewed. Special attention is given to the effect of the crystal size of ZIFs on their catalytic properties in such reactions as condensation, cyclization, and esterification. The advantages and drawbacks of ZIFs as catalysts and the main questions that arise during practical use are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Kustov, V. I. Isaeva, J. Prech, K. K. Bisht, Mendeleev Commun., 2019, 29, 361; DOI: https://doi.org/10.1016/j.mencom.2019.07.001.

    Article  CAS  Google Scholar 

  2. A. V. Marakulin, A. A. Lysova, D. G. Samsonenko, P. V. Dorovatovskii, V. A. Lazarenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 360; DOI: https://doi.org/10.1007/s11172-020-2768-9.

    Article  CAS  Google Scholar 

  3. V. N. Panchenko, S. H. Jhung, M. N. Timofeeva, Russ. Chem. Bull., 2015, 64, 1772; DOI: https://doi.org/10.1007/s11172-015-1071-7.

    Article  CAS  Google Scholar 

  4. A. Yu. Tsivadze, O. E. Aksyutin, A. G. Ishkov, M. K. Knyazeva, O. V. Solovtsova, I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, E. V. Khozina, V. A. Grachev, Russ. Chem. Rev., 2019, 88, 925; DOI: https://doi.org/10.1070/RCR4873.

    Article  CAS  Google Scholar 

  5. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res., 2010, 43, 58; DOI: https://doi.org/10.1021/ar900116g.

    Article  CAS  PubMed  Google Scholar 

  6. T. Duren, Y.-S. Bae, R. Q. Snurr, Chem. Soc. Rev., 2009, 38, 1237; DOI: https://doi.org/10.1039/B803498M.

    Article  PubMed  CAS  Google Scholar 

  7. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E. Morris, C. Serre, Chem. Rev., 2012, 112, 1232; DOI: https://doi.org/10.1021/cr200256v.

    Article  CAS  PubMed  Google Scholar 

  8. A. Corma, H. Garcia, F. X. Llabres i Xamena, Chem. Rev., 2010, 110, 4606; DOI: https://doi.org/10.1021/cr9003924.

    Article  CAS  PubMed  Google Scholar 

  9. V. N. Panchenko, M. N. Timofeeva, S. H. Jhung, Catal. Rev.: Sci. Eng., 2016, 58, 209; DOI: https://doi.org/10.1080/01614940.2016.1128193.

    Article  CAS  Google Scholar 

  10. Y.-Q. Tian, C.-X. Cai, Y. Ji, X.-Z. You, S.-M. Peng, G.-S. Lee, Angew. Chem., Int. Ed., 2002, 41, 1442; DOI: https://doi.org/10.1002/1521-3757(20020415)114:8<1442::AID-ANGE1442>3.0.CO;2-4.

    Article  Google Scholar 

  11. K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, O. M. Yaghi, Proc. Natl. Acad. Sci., 2006, 103, 10186; DOI: https://doi.org/10.1073/pnas.0602439103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. K. A. Kovalenko, Cand Sci. (Chem.) Dissertation, Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010, 141 pp. (in Russian).

    Google Scholar 

  13. B. N. Bhadra, P. W. Seo, N. A. Khan, S. H. Jhung, Inorg. Chem., 2016, 55, 11362; DOI: https://doi.org/10.1021/acs.inorgchem.6b01882.

    Article  CAS  PubMed  Google Scholar 

  14. M. Sarker, B. N. Bhadra, P. W. Seo, S. H. Jhung, J. Hazard. Mater., 2017, 324, 131; DOI: https://doi.org/10.1016/j.jhazmat.2016.10.042.

    Article  CAS  PubMed  Google Scholar 

  15. J.-Q. Jiang, C.-X. Yang, X.-P. Yan, ACS Appl. Mater. Interfaces, 2013, 5, 9837; DOI: https://doi.org/10.1021/am403079n.

    Article  CAS  PubMed  Google Scholar 

  16. M. Timofeeva, E. Paukshtis, V. Panchenko, K. Shefer, V. Isaeva, L. Kustov, E. Gerasimov, Eur. J. Org. Chem., 2019, 26, 4215; DOI: https://doi.org/10.1002/ejoc.201900354.

    Article  CAS  Google Scholar 

  17. M. N. Timofeeva, I. A. Lykoyanov, V. N. Panchenko, K. I. Shefer, B. Nath Bhadra, S. H. Jhung, Ind. Eng. Chem. Res., 2019, 58, 25, 10750; DOI: https://doi.org/10.1021/acs.iecr.9b00655.

    Article  CAS  Google Scholar 

  18. F. Zhang, Y. Wei, X. Wu, H. Jiang, W. Wang, H. Li, J. Am. Chem. Soc., 2014, 136, 13963; DOI: https://doi.org/10.1021/ja506372z.

    Article  CAS  PubMed  Google Scholar 

  19. M. N. Timofeeva, V. N. Panchenko, I. A. Lukoyanov, S. H. Jhung, 4th Int. Conf. on Bioresources, Energy, Environment, and Materials Technology (BEEM2020) (September 6–9, 2020, Songdo Convensia, Incheon, Korea), KOFST, Korea, 2020, p. 212; http://www.beem-society.org/download/BEEM2020_PROCEEDINGS.pdf.

    Google Scholar 

  20. I. A. Lukoyanov, M. N. Timofeeva, G. O. Kalashnikova, K. I. Sheffer, E. Yu. Gerasimov, V. N. Panchenko, E. A. Selivanova, Vseross. internet-simp. s mezhdunarodnym uchastiem “Khimicheski modifitsirovannye mineraly i biopolimery v XXI veke CHEMOPOLYS 2020” posvyashchennyi 100-letiyu nauki o polimerakh i 90-letiyu Voronezhskogo gosudarstvennogo lesotekhnicheskogo universiteta [All-Russian InternetSymposium with International Participation “Chemically Modified Minerals and Biopolymers in XXI Century CHEMOPOLYS 2020” dedicated to the 100th anniversary of polymer science and 90th anniversary of the Voronezh State Forestry Engineering University] (December 1–2, 2020, Voronezh), FGBOU VO “LGTU,” Voronezh, 2020, pp. 173–178 (in Russian).

  21. M. N. Timofeeva, V. N. Panchenko, I. A. Lukoyanov, S. H. Jhung, 2nd Int. Conf. on Reaction Kinetics, Mechanisms and Catalysis (May 20–22, 2021, Budapest, Hungary), Akademiai Kiado, Budapest, 2021, p. 28; https://static.akcongress.com/downloads/rkmc/rkmc2021-boa.pdf.

    Google Scholar 

  22. T. Toyao, M. Fujiwaki, K. Miyahara, T. H. Kim, Y. Horiuchi, M. Matsuoka, ChemSusChem., 2015, 8, 3905; DOI: https://doi.org/10.1002/cssc.201500780.

    Article  CAS  PubMed  Google Scholar 

  23. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Science, 2008, 319, 939; DOI: https://doi.org/10.1126/science.1152516.

    Article  CAS  PubMed  Google Scholar 

  24. X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Angew. Chem., Int. Ed., 2006, 45, 1557; DOI: https://doi.org/10.1002/anie.200503778.

    Article  CAS  Google Scholar 

  25. B. P. Biswal, T. Panda, R. Banerjee, Chem. Commun., 2012, 48, 11868; DOI: https://doi.org/10.1039/C2CC36651G.

    Article  CAS  Google Scholar 

  26. B. Mousavi, Z. Luo, S. Phatanasri, W. Su, T. Wang, S. Chaemchuen, F. Verpoort, Eur. J. Inorg. Chem., 2017, 42, 4947; DOI: https://doi.org/10.1002/ejic.201700673.

    Article  CAS  Google Scholar 

  27. A. U. Ortiz, A. P. Freitas, A. Boutin, A. H. Fuchs, F.-X. Coudert, Phys. Chem. Chem. Phys., 2014, 16, 9940–9949; DOI: https://doi.org/10.1039/C3CP54292K.

    Article  CAS  PubMed  Google Scholar 

  28. P. D. Du, N. V. D. Thanh, N. T. Hieu, Adv. Mater. Sci. Eng., 2019, Article ID 6707143, 8 pages; DOI: https://doi.org/10.1155/2019/6707143.

  29. M. Opanasenko, A. Dhakshinamoorthy, Y. K. Hwang, J.-S. Chang, H. Garcia, J. Cejka, ChemSusChem, 2013, 6, 865; DOI: https://doi.org/10.1002/cssc.201300032.

    Article  CAS  PubMed  Google Scholar 

  30. C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy, M. A. Carreon, ACS Catal., 2012, 2, 180–183; DOI: https://doi.org/10.1021/cs200638h.

    Article  CAS  Google Scholar 

  31. L. I. Rodionova, E. E. Knyazeva, S. V. Konnov, I. I. Ivanova, Petrol. Chem., 2019, 59, 455; DOI: https://doi.org/10.1134/S0965544119040133.

    Article  CAS  Google Scholar 

  32. T. Tago, H. Konno, M. Sakamoto, Y. Nakasaka, T. Masuda, Appl. Catal. A: Gen., 2011, 403, 183; DOI: https://doi.org/10.1016/j.apcata.2011.06.029.

    Article  CAS  Google Scholar 

  33. N. Y. Kang, S. I. Woo, Y. J. Lee, J. Bae, W. C. Choi, Y.-K. Park, J. Mater. Sci., 2016, 51, 3735; DOI: https://doi.org/10.1007/s10853-015-9691-8.

    Article  CAS  Google Scholar 

  34. Q. Cui, Y. Zhou, Q. Wei, X. Tao, G. Yu, Y. Wang, J. Yang, Energy Fuels, 2012, 26, 4664; DOI: https://doi.org/10.1021/ef300544c.

    Article  CAS  Google Scholar 

  35. V. P. Shiralkar, P. N. Joshi, M. J. Eapen, B. S. Rao, Zeolites, 1991, 11, 511; DOI: https://doi.org/10.1016/S0144-2449(05)80127-7.

    Article  CAS  Google Scholar 

  36. T. Kiyonaga, M. Higuchi, T. Kajiwara, Y. Takashima, J. Duan, K. Nagashima, S. Kitagawa, Chem. Commun., 2015, 51, 2728; DOI: https://doi.org/10.1039/c4cc07562e.

    Article  CAS  Google Scholar 

  37. H.-Y. Cho, D. A. Yang, J. Kim, S. Y. Jeong, W. S. Ahn, Catal. Today, 2012, 185, 35; DOI: https://doi.org/10.1016/j.cattod.2011.08.019.

    Article  CAS  Google Scholar 

  38. J. Mondal, A. Modak, A. Bhaumik, J. Mol. Catal. A., 2011, 335, 236; DOI: https://doi.org/10.1016/j.molcata.2010.11.039.

    Article  CAS  Google Scholar 

  39. R. Xing, H. Wu, X. Li, Z. Zhao, Y. Liu, L. Chen, P. Wu, J. Mater. Chem., 2009, 19, 4004; DOI: https://doi.org/10.1039/B822659H.

    Article  CAS  Google Scholar 

  40. K. M. Parida, S. Mallick, P. C. Sahoo, S. K. Rana, Appl. Catal. A., 2010, 381, 226; DOI: https://doi.org/10.1016/j.apcata.2010.04.008.

    Article  CAS  Google Scholar 

  41. J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. Klink, F. Kapteijn, J. Catal., 2009, 261, 75; DOI: https://doi.org/10.1016/j.jcat.2008.11.010.

    Article  CAS  Google Scholar 

  42. V. N. Panchenko, M. M. Matrosova, J. Jeon, J. W. Jun, M. N. Timofeeva, S. H. Jhung, J. Catal., 2014, 316, 251; DOI: https://doi.org/10.1016/j.jcat.2014.05.018.

    Article  CAS  Google Scholar 

  43. L. T. Nguyen, K. K. Le, H. X. Truong, N. T. Phan, Catal. Sci. Technol., 2012, 2, 521; DOI: https://doi.org/10.1039/C1CY00386K.

    Article  CAS  Google Scholar 

  44. Y. Zhang, X. Zhang, R. Bai, X. Hou, J. Li, Catalysts, 2018, 8, 315; DOI: https://doi.org/10.3390/catal8080315.

    Article  CAS  Google Scholar 

  45. O. Kolmykov, N. Chebbat, J.-M. Commenge, G. Medjahdi, R. Schneider, Tetrahedron Lett., 2016, 57, 5885; DOI: https://doi.org/10.1016/j.tetlet.2016.11.070.

    Article  CAS  Google Scholar 

  46. M. N. Timofeeva, V. N. Panchenko, M. M. Matrosova, A. S. Andreev, S. V. Tsybulya, A. Gil, M. A. Vicente, Ind. Eng. Chem. Res., 2014, 53, 13565; DOI: https://doi.org/10.1021/ie501048a.

    Article  CAS  Google Scholar 

  47. M. N. Timofeeva, A. E. Kapustin, V. N. Panchenko, E. O. Butenko, V. V. Krupskaya, A. Gil, M. A. Vicente, J. Mol. Catal. A: Chem., 2016, 423, 22; DOI: https://doi.org/10.1016/j.molcata.2016.06.006.

    Article  CAS  Google Scholar 

  48. C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A.-A. Quoineaud, N. Bats, J. Am. Chem. Soc., 2010, 132, 12365; DOI: https://doi.org/10.1021/ja103365s.

    Article  CAS  PubMed  Google Scholar 

  49. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res., 2010, 43, 587; DOI: https://doi.org/10.1021/ar900116g.

    Article  CAS  Google Scholar 

  50. A. Schejn, L. Balan, V. Falk, V. Aranda, L. Medjahdi, G. Schneider, R. Schneider, CrystEngComm, 2014, 16, 4493; DOI: https://doi.org/10.1039/C3CE42485E.

    Article  CAS  Google Scholar 

  51. J. Marco-Contelles, E. Perez-Mayoral, A. Samadi, M. do Carmo Carreiras, E. Soriano, Chem. Rev., 2009, 109, 2652; DOI: https://doi.org/10.1021/cr800482c.

    Article  CAS  PubMed  Google Scholar 

  52. E. Perez-Mayoral, J. Cejka, ChemCatChem, 2011, 3, 157; DOI: https://doi.org/10.1002/cctc.201000201.

    Article  CAS  Google Scholar 

  53. E. Perez-Mayoral, Z. Musilova, B. Gil, B. Marszalek, M. Polozij, P. Nachtigall, J. Cejka, Dalton Trans., 2012, 41, 4036; DOI: https://doi.org/10.1039/C2DT11978A.

    Article  CAS  PubMed  Google Scholar 

  54. S. Zheng, Doktors der Naturwissenschaften, Institut für Technische Chemie II der Technischen Universität München, München, 2002, 123 pp.; https://mediatum.ub.tum.de/doc/601265/601265.pdf.

    Google Scholar 

  55. Y. Wei, Z. Hao, F. Zhang, H. Li, J. Mater. Chem. A, 2015, 3, 14779; DOI: https://doi.org/10.1039/C5TA03008K.

    Article  CAS  Google Scholar 

  56. P. Ketttenis, Toxicol. Lett., 2005, 156, 51; DOI: https://doi.org/10.1016/j.toxlet.2003.12.076.

    Article  CAS  Google Scholar 

  57. G. Ortiz, H. Nouali, C. Marichal, G. Chaplais, J. Patarin, J. Phys. Chem. C, 2014, 118, 21316; DOI: https://doi.org/10.1021/jp505484x.

    Article  CAS  Google Scholar 

  58. A. U. Ortiz, A. P. Freitas, A. Boutin, A. H. Fuchs, F.-X. Coudert, Phys. Chem. Chem. Phys., 2014, 16, 9940; DOI: https://doi.org/10.1039/C3CP54292K.

    Article  CAS  PubMed  Google Scholar 

  59. T. Ueda, M. Nakai, T. Yamatani, Adsorption, 2017, 23, 887; DOI: https://doi.org/10.1007/s10450-017-9902-5.

    Article  CAS  Google Scholar 

  60. D. I. Kolokolov, A. G. Stepanov, H. Jobic, J. Phys. Chem. C, 2015, 119, 27512; DOI: https://doi.org/10.1021/acs.jpcc.5b09312.

    Article  CAS  Google Scholar 

  61. J. Kim, S.-N. Kim, H.-G. Jang, G. Seo, W.-S. Ahn, Appl. Catal. A: Gen., 2013, 453, 175–180; DOI: https://doi.org/10.1016/j.apcata.2012.12.018.

    Article  CAS  Google Scholar 

  62. I. A. Lukoyanov, N. V. Gromov, T. B. Medvedeva, V. N. Panchenko, M. N. Timofeeva, V. N. Parmon, S. H. Jhung, Catal. Ind., 2021, 13, 395–402; DOI: https://doi.org/10.1134/S2070050421040061.

    Article  Google Scholar 

  63. K. M. Bhin, J. Tharun, K. R. Roshan, D.-W. Kim, Y. Chung, D.-W. Park, J. CO2 Util., 2017, 17, 112; DOI: https://doi.org/10.1016/j.jcou.2016.12.001.

    Article  CAS  Google Scholar 

  64. J. Tharun, G. Mathai, A. C. Kathalikkatti, R. Roshan, Y.-S. Won, S. J. Cho, J.-S. Chang, D.-W. Park, ChemPlusChem, 2015, 80, 715; DOI: https://doi.org/10.1002/cplu.201402395.

    Article  CAS  PubMed  Google Scholar 

  65. W. Xiang, C. Shen, Z. Lu, S. Chen, X. Li, R. Zou, Y. Zhang, C. Liu, Chem. Eng. Sci., 2021, 233, Article ID 116429, 11 pages; DOI: https://doi.org/10.1016/j.ces.2020.116429.

  66. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, B. Han, Green Chem., 2009, 11, 1031; DOI: https://doi.org/10.1039/B902550B.

    Article  CAS  Google Scholar 

  67. R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D. W. Kim, D. W. Park, Green Chem., 2016, 18, 232; DOI: https://doi.org/10.1039/C5GC01763G.

    Article  Google Scholar 

  68. C. Calabrese, F. Giacalone, C. Aprile, Catalysts, 2019, 9, 325; DOI: https://doi.org/10.3390/catal9040325.

    Article  CAS  Google Scholar 

  69. H. Ryu, R. Roshan, M.-I. Kim, D.-W. Kim, M. Selvaraj, D.-W. Park, Korean J. Chem. Eng., 2017, 34, 928; DOI: https://doi.org/10.1007/s11814-016-0339-4.

    Article  CAS  Google Scholar 

  70. M. N. Timofeeva, I. A. Lukoyanov, V. N. Panchenko, E. Yu. Gerasimov, Biswa Nath Bhadra, S. H. Jhung, Catalysts, 2021, 11, 1061; DOI: https://doi.org/10.3390/catal11091061.

    Article  CAS  Google Scholar 

  71. O. M. Linder-Patton, T. J. de Prinse, S. Furukawa, S. G. Bell, K. Sumida, C. J. Doonan, C. J. Sumbym, CrystEngComm, 2018, 20, 4926; DOI: https://doi.org/10.1039/C8CE00746B.

    Article  CAS  Google Scholar 

  72. D. Dahnum, B. Seo, S.-H. Cheong, U. Lee, J.-M. Ha, H. Lee, J. Catal., 2019, 380, 297; DOI: https://doi.org/10.1016/j.jcat.2019.09.039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Timofeeva.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 599–612, April, 2022.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation in terms of state assignment of the G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences (Project No. AAAA-A21-121011390055-8).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, M.N., Lukoyanov, I.A., Panchenko, V.N. et al. Particle size effect on the catalytic properties of zeolitic imidazolate frameworks. Russ Chem Bull 71, 599–612 (2022). https://doi.org/10.1007/s11172-022-3458-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3458-6

Key words

Navigation