Skip to main content
Log in

Congenital Hyperinsulinism due to mutations in HNF4A and HADH

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Mutations in the HADH and HNF4A genes are rare causes of diazoxide responsive congenital hyperinsulinism (CHI). This chapter details the phenotype known to be associated with mutations in these genes. Additionally, the authors give a brief overview of the role of these genes in glucose physiology and the possible mechanisms of CHI in patients with mutations in these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kapoor RR, Flanagan SE, James C, Shield J, Ellard S, Hussain K. Hyperinsulinaemic hypoglycaemia. Arch Dis Child. 2009;94(6):450–7.

    Article  CAS  PubMed  Google Scholar 

  2. Noyes BE, Bradshaw RA. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. I. Purification and properties. J Biol Chem. 1973;248(9):3052–9.

    CAS  PubMed  Google Scholar 

  3. He XY, Yang SY, Schulz H. Assay of L-3-hydroxyacyl-coenzyme A dehydrogenase with substrates of different chain lengths. Anal Biochem. 1989;180(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  4. Vredendaal PJ, van den Berg I, Malingre HE, Stroobants AK, Olde Weghuis DE, Berger R. Human short-chain L-3-hydroxyacyl-CoA dehydrogenase: cloning and characterization of the coding sequence. Biochem Biophys Res Commun. 1996;223(3):718–23.

    Article  CAS  PubMed  Google Scholar 

  5. Vredendaal PJ, van den Berg I, Stroobants AK, van der AD, Malingre HE, Berger R. Structural organization of the human short-chain L-3-hydroxyacyl-CoA dehydrogenase gene. Mamm Genome. 1998;9(9):763–8.

    Article  CAS  PubMed  Google Scholar 

  6. Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J. 1996;320(Pt 2):345–57.

    CAS  PubMed  Google Scholar 

  7. Rinaldo P, Matern D, Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol. 2002;64:477–502.

    Article  CAS  PubMed  Google Scholar 

  8. Agren A, Borg K, Brolin SE, Carlman J, Lundqvist G. Hydroxyacyl CoA dehydrogenase, an enzyme important in fat metabolism in different cell types in the islets of Langerhans. Diabète Métab. 1977;3(3):169–72.

    CAS  PubMed  Google Scholar 

  9. Martens GA, Vervoort A, Van de CM, Stange G, Hellemans K, Van Thi HV, et al. Specificity in beta cell expression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potential role in down-regulating insulin release. J Biol Chem. 2007;282(29):21134–44.

    Article  CAS  PubMed  Google Scholar 

  10. Hardy OT, Hohmeier HE, Becker TC, Manduchi E, Doliba NM, Gupta RK, et al. Functional genomics of the beta-cell: short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents. Mol Endocrinol. 2007;21(3):765–73.

    Article  CAS  PubMed  Google Scholar 

  11. Lantz KA, Vatamaniuk MZ, Brestelli JE, Friedman JR, Matschinsky FM, Kaestner KH. Foxa2 regulates multiple pathways of insulin secretion. J Clin Invest. 2004;114(4):512–20.

    CAS  PubMed  Google Scholar 

  12. Sund NJ, Vatamaniuk MZ, Casey M, Ang SL, Magnuson MA, Stoffers DA, et al. Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes Dev. 2001;15(13):1706–15.

    Article  CAS  PubMed  Google Scholar 

  13. Clayton PT, Eaton S, ynsley-Green A, Edginton M, Hussain K, Krywawych S, et al. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001;108(3):457–65.

    CAS  PubMed  Google Scholar 

  14. Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U, Njolstad PR, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes. 2004;53(1):221–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hussain K, Clayton PT, Krywawych S, Chatziandreou I, Mills P, Ginbey DW, et al. Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr. 2005;146(5):706–8.

    Article  CAS  PubMed  Google Scholar 

  16. Di CS, Gessi A, Pepe G, Sogno VP, Mangano E, Chiumello G, et al. Identification of a diffuse form of hyperinsulinemic hypoglycemia by 18-fluoro-L-3, 4 dihydroxyphenylalanine positron emission tomography/CT in a patient carrying a novel mutation of the HADH gene. Eur J Endocrinol. 2009;160(6):1019–23.

    Article  Google Scholar 

  17. Kapoor RR, James C, Flanagan SE, Ellard S, Eaton S, Hussain K. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab. 2009;94(7):2221–5.

    Article  CAS  PubMed  Google Scholar 

  18. Molven A, Rishaug U, Matre GE, Njolstad PR, Sovik O. Hunting for a hypoglycemia gene: severe neonatal hypoglycemia in a consanguineous family. Am J Med Genet. 2002;113(1):40–6.

    Article  PubMed  Google Scholar 

  19. Eaton S, Chatziandreou I, Krywawych S, Pen S, Clayton PT, Hussain K. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with hyperinsulinism: a novel glucose-fatty acid cycle? Biochem Soc Trans. 2003;31(Pt 6):1137–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cochrane WA, Payne WW, Simpkiss MJ, Woolf LI. Familial hypoglycemia precipitated by amino acids. J Clin Invest. 1956;35(4):411–22.

    Article  CAS  PubMed  Google Scholar 

  21. Fahien LA, MacDonald MJ, Kmiotek EH, Mertz RJ, Fahien CM. Regulation of insulin release by factors that also modify glutamate dehydrogenase. J Biol Chem. 1988;263(27):13610–4.

    CAS  PubMed  Google Scholar 

  22. Fourtner SH, Stanley CA, Kelly A. Protein-sensitive hypoglycemia without leucine sensitivity in hyperinsulinism caused by K(ATP) channel mutations. J Pediatr. 2006;149(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, et al. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem. 2010;29.

  24. Filling C, Keller B, Hirschberg D, Marschall HU, Jornvall H, Bennett MJ, et al. Role of short-chain hydroxyacyl CoA dehydrogenases in SCHAD deficiency. Biochem Biophys Res Commun. 2008;368(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  25. Sladek FM, Zhong WM, Lai E, Darnell Jr JE. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 1990;4(12B):2353–65.

    Article  CAS  PubMed  Google Scholar 

  26. Boj SF, Parrizas M, Maestro MA, Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci USA. 2001;98(25):14481–6.

    Article  CAS  PubMed  Google Scholar 

  27. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303(5662):1378–81.

    Article  CAS  PubMed  Google Scholar 

  28. Boj SF, Petrov D, Ferrer J. Epistasis of transcriptomes reveals synergism between transcriptional activators Hnf1alpha and Hnf4alpha. PLoS Genet. 2010;6(5):e1000970.

    Article  PubMed  Google Scholar 

  29. Wang H, Maechler P, Antinozzi PA, Hagenfeldt KA, Wollheim CB. Hepatocyte nuclear factor 4alpha regulates the expression of pancreatic beta -cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J Biol Chem. 2000;275(46):35953–9.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas H, Jaschkowitz K, Bulman M, Frayling TM, Mitchell SM, Roosen S, et al. A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet. 2001;10(19):2089–97.

    Article  CAS  PubMed  Google Scholar 

  31. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 1996;384(6608):458–60.

    Article  CAS  PubMed  Google Scholar 

  32. Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4(4):e118.

    Article  PubMed  Google Scholar 

  33. Fajans SS, Bell GI. Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4alpha (HNF4A). Diabetologia. 2007;50(12):2600–1.

    Article  CAS  PubMed  Google Scholar 

  34. Kapoor RR, Locke J, Colclough K, Wales J, Conn JJ, Hattersley AT, et al. Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. Diabetes. 2008;57(6):1659–63.

    Article  CAS  PubMed  Google Scholar 

  35. Flanagan SE, Kapoor RR, Mali G, Cody D, Murphy N, Schwahn B, et al. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol. 2010;162(5):987–92.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta RK, Vatamaniuk MZ, Lee CS, Flaschen RC, Fulmer JT, Matschinsky FM, et al. The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Invest. 2005;115(4):1006–15.

    CAS  PubMed  Google Scholar 

  37. Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, et al. Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem. 2006;281(8):5246–57.

    Article  CAS  PubMed  Google Scholar 

  38. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. 2002;51 Suppl 3:S405–13.

    Article  CAS  PubMed  Google Scholar 

  39. Gremlich S, Nolan C, Roduit R, Burcelin R, Peyot ML, ghingaro-Augusto V, et al. Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. Endocrinology. 2005;146(1):375–82.

    Article  CAS  PubMed  Google Scholar 

  40. Kaestner KH. Transcriptional regulation in islet expansion during pregnancy. Paper presented at ENDO 2010, 19–22 June, San Diego USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, R.R., Heslegrave, A. & Hussain, K. Congenital Hyperinsulinism due to mutations in HNF4A and HADH . Rev Endocr Metab Disord 11, 185–191 (2010). https://doi.org/10.1007/s11154-010-9148-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-010-9148-y

Keywords

Navigation