Skip to main content
Log in

Quantum computation of phase transition in interacting scalar quantum field theory

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It has been demonstrated that the critical point of the phase transition in scalar quantum field theory with a quartic interaction in one space dimension can be approximated via a Gaussian Effective Potential (GEP). We discuss how this critical point can be estimated using quantum hardware. Performing quantum computations with various lattice sizes, we obtain evidence of a transition from a symmetric to a symmetry-broken phase using both discrete- and continuous-variable quantum computation. The ten-site case is implemented on IBM quantum hardware using the Variational Quantum Eigensolver algorithm to minimize the GEP and identify lattice level crossings. These are extrapolated via simulations to find the continuum critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Byrnes, T., Yamamoto, Y.: Simulating lattice gauge theories on a quantum computer. Phys. Rev. A 73, 022328 (2006)

    Article  ADS  Google Scholar 

  2. Yeter-Aydeniz, K., Siopsis, G.: Quantum computation of scattering amplitudes in scalar quantum electrodynamics. Phys. Rev. D 97, 036004 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  3. Lamm, H., Lawrence, S., Yamauchi, Y.: General methods for digital quantum simulation of gauge theories. Phys. Rev. D 100, 034518 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  4. Davoudi, Z., Hafezi, M., Monroe, C., Pagano, G., Seif, A.: Shaw A Towards analog quantum simulations of lattice gauge theories with trapped ions. Phys. Rev. Res. 2, 023015 (2020)

    Article  Google Scholar 

  5. Shaw, A.F., Lougovski, P., Stryker, J.R., Wiebe, N.: Quantum algorithms for simulating the Lattice Schwinger model. Quantum 4, 306 (2020)

  6. Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., Blatt, R.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016)

    Article  ADS  Google Scholar 

  7. Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018)

    Article  ADS  Google Scholar 

  8. Klco, N., Savage, M.J., Stryker, J.R.: SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Phys. Rev. D 101, 074512 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  9. Atas, Y.Y., Zhang, J., Lewis, R., Jahanpour, A., Haase, J.F., Muschik, C.A.: SU(2) hadrons on a quantum computer via a variational approach. Nat. Commun. 12(1), 6499 (2021)

    Article  ADS  Google Scholar 

  10. Shor, PW.: Fault-tolerant quantum computation (1996). arXiv:quant-ph/9605011

  11. Aharonov, Dorit, Ben-Or, Michael: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38(4), 1207–1282 (2008). https://doi.org/10.1137/S0097539799359385

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation (2009). arXiv:0904.2557

  13. Nachman, B., Urbanek, M., de Jong, W.A., Bauer, C.W.: Unfolding quantum computer readout noise (2019). arXiv:1910.01969

  14. Hicks, R., Kobrin, B., Bauer, C.W., Nachman, B.: Active readout-error mitigation. Phys. Rev. A 105, 012419 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  15. van den Berg, E., Minev, Z.K., Temme, K.: Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  16. Funcke, L., Hartung, T., Jansen, K., Kühn, S., Stornati, P., Wang, X.: Measurement error mitigation in quantum computers through classical bit-flip correction. Phys. Rev. A 105, 062404 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  17. Dumitrescu, E.F., McCaskey, A.J., Hagen, G., Jansen, G.R., Morris, T.D., Papenbrock, T., Pooser, R.C., Dean, D.J., Lougovski, P.: Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018)

    Article  ADS  Google Scholar 

  18. He, A., Nachman, B., de Jong, W.A., Bauer, C.W.: Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Phys. Rev. A 102, 012426 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pascuzzi, V.R., He, A., Bauer, C.W., de Jong, W.A., Nachman, B.: Computationally efficient zero-noise extrapolation for quantum-gate-error mitigation. Phys. Rev. A 105, 042406 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  20. Bartlett, S.D., Sanders, B.C.: Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting. Phys. Rev. A 65, 042304 (2002)

    Article  ADS  Google Scholar 

  21. Wang, J., Sciarrino, F., Laing, A., Thompson, M.G.: Integrated photonic quantum technologies. Nat. Photon. 14(5), 273–284 (2019)

    Article  ADS  Google Scholar 

  22. Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001)

    Article  ADS  Google Scholar 

  23. Yeter-Aydeniz, K., Dumitrescu, E.F., McCaskey, A.J., Bennink, R.S., Pooser, R.C., Siopsis, G.: Scalar quantum field theories as a benchmark for near-term quantum computers. Phys. Rev. A 99, 032306 (2019)

    Article  ADS  Google Scholar 

  24. Motta, M., Sun, C., Tan, A.T.K., O’Rourke, M.J., Ye, E., Minnich, A.J., Brandão, F.G.S.L., Chan, G.K.: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2019)

    Article  Google Scholar 

  25. Yeter-Aydeniz, K., Moschandreou, E., Siopsis, G.: Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables. Phys. Rev. A 105, 012412 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  26. Jona-Lasinio, G.: Relativistic field theories with symmetry-breaking solutions. Nuovo Cimento (Italy) Divided into Nuovo Cimento A and Nuovo Cimento B, 34(10), (1964)

  27. Coleman, S., Weinberg, E.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973)

    Article  ADS  Google Scholar 

  28. Stevenson, P.M.: Gaussian effective potential: quantum mechanics. Phys. Rev. D 30, 1712–1726 (1984)

    Article  ADS  Google Scholar 

  29. Stevenson, P.M.: Gaussian effective potential. II. \(\lambda \)\({\varphi }^{4}\) field theory. Phys. Rev. D 32, 1389–1408 (1985)

    Article  ADS  Google Scholar 

  30. Stavenger T.J., Crane, E., Smith, K., Kang, C.T., Girvin, S.M., Wiebe, N.: Bosonic Qiskit (2022). arXiv:2209.11153

  31. Coleman, S.: Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11, 2088–2097 (1975)

    Article  ADS  Google Scholar 

  32. Chang, S.: Existence of a second-order phase transition in a two-dimensional \({\varphi }^{4}\) field theory. Phys. Rev. D 13, 2778–2788 (1976)

    Article  ADS  Google Scholar 

  33. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M., Zhou, X., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014)

    Article  ADS  Google Scholar 

  34. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331 (2019)

    Article  ADS  Google Scholar 

  35. Killoran, Nathan, Izaac, Josh, Quesada, Nicolás, Bergholm, Ville, Amy, Matthew, Weedbrook, Christian: Strawberry fields: a software platform for photonic quantum computing. Quantum 3, 129 (2019). https://doi.org/10.22331/q-2019-03-11-129

    Article  Google Scholar 

  36. Vahlbruch, H., Mehmet, M., Chelkowski, S., Hage, B., Franzen, A., Lastzka, N., Goßler, S., Danzmann, K., Schnabel, R.: Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008)

    Article  ADS  Google Scholar 

  37. Polley, L., Ritschel, U.: Second-order phase transition in \(\lambda \phi _2^4\) with non-gaussian variational approximation. Phys. Lett. B 221(1), 44–48 (1989)

    Article  ADS  Google Scholar 

  38. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979). https://doi.org/10.1214/aos/1176344552

    Article  MathSciNet  MATH  Google Scholar 

  39. Plesch, M., Brukner, V.: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011)

    Article  ADS  Google Scholar 

  40. Iten, R., Colbeck, R., Kukuljan, I., Home, J., Christandl, M.: Quantum circuits for isometries. Phys. Rev. A 93, 032318 (2016)

    Article  ADS  Google Scholar 

  41. Grimsley, H.R., Economou, S.E., Barnes, E., Mayhall, N.J.: An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10(1), 3007 (2019)

    Article  ADS  Google Scholar 

  42. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  ADS  Google Scholar 

  43. Gottesman, D.: The Heisenberg Representation of Quantum Computers (1998). arXiv: quant-ph/9807006

  44. Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)

    Article  ADS  Google Scholar 

  45. Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  46. Somma, R., Ortiz, G., Gubernatis, J.E., Knill, E., Laflamme, R.: Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research supported by DOE ASCR funding under the Quantum Computing Application Teams Program, Army Research Office award W911NF-19-1-0397, NSF award DGE-2152168, and DOE award DE-SC0023687. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE–AC05–00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Siopsis.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Critical coupling

In this Appendix, we provide details of the calculation of minima of the GEP. In Sect. 3, we asserted that the effective potential, as a function of the mass parameter \(\Omega \) (Eq. (28)), has a second minimum at some \(\Omega _1>m\). We can use Eq. (29) to eliminate the bare mass \(m_0\) in favor of the renormalized mass \(m = \Omega _0\) in (28) to obtain

$$\begin{aligned} V_{\text{ G }} (\Omega )= & {} \frac{1}{2} \left[ \Omega _0^2 - \frac{\lambda }{2} I_0 (\Omega _0) \right] \left[ \frac{2(\Omega ^2 -\Omega _0^2 )}{\lambda } +I_0 (\Omega _0)- I_0 \right] \nonumber \\{} & {} + \frac{\lambda }{4!} \left[ \frac{2(\Omega ^2 -\Omega _0^2 )}{\lambda } + I_0 (\Omega _0)- I_0 \right] ^2 + I_1 - \frac{\lambda }{8} I_0^2 \end{aligned}$$
(A1)

The value of the potential at the renormalized mass is

$$\begin{aligned} V_{\text{ G }} (\Omega _0) = I_1 (\Omega _0) - \frac{\lambda }{8} I_0^2 (\Omega _0) \end{aligned}$$
(A2)

The derivative of (A1) is

$$\begin{aligned} \frac{{\text{ d }}V_{\text{ G }}}{{\text{ d }}\Omega ^2} = \frac{1}{3\lambda } \left[ 1 -\frac{\lambda }{2} \frac{dI_0}{d\Omega ^2} \right] \left[ \Omega ^2 +2\Omega _0^2 + \lambda I_0- \lambda I_0 (\Omega _0) \right] \end{aligned}$$
(A3)

It vanishes for \(\Omega = \Omega _1\) such that

$$\begin{aligned} \lambda = \frac{\Omega _1^2 + 2\Omega _0^2}{I_0 (\Omega _0) -I_0 (\Omega _1)} \end{aligned}$$
(A4)

For the phase transition, we need to know the sign of \(\Delta V_{\text{ G }}\) (Eq. (31)). We obtain

$$\begin{aligned}{} & {} \Delta V_{\text{ G }} =\nonumber \\{} & {} \quad \frac{[-\Omega _1^4-4\Omega _1^2\Omega _0^2 +2\Omega _0^4] I_0 (\Omega _1) +[-\Omega _1^4+2\Omega _1^2\Omega _0^2 +2\Omega _0^4] I_0 (\Omega _0) + 4(\Omega _1^2 + 2\Omega _0^2) ( I_1(\Omega _1) -I_1 (\Omega _0)) }{4(\Omega _1^2 + 2\Omega _0^2)}\nonumber \\ \end{aligned}$$
(A5)

where we used (A4). Given \(m= \Omega _0\), the solution \(\Omega = \Omega _1\) to \(\Delta V_{\text{ G }}=0\) with \(\Omega _1 > \Omega _0\) is the critical value \(\Omega _c\). These values are plotted for different lattice sizes on panel (a) in Fig. 3. Substituting in (A4), we obtain the critical coupling \(\lambda _c\) (Eq. (32)). Their values for different lattice sizes are shown on panel (b) in Fig. 3.

Appendix B: VQE

In this Appendix, we provide details of the terms in the Hamiltonian that are relevant to our VQE algorithm and the CV quantum circuits.

To take advantage of the form of the Ansatz state, we express the Hamiltonian in terms of the quadrature operators q and p and then compute expectation values of the various terms in the Hamiltonian using a quantum computer. Notice that the Gaussian Ansatz in Fig. 4 is even under the reflection operators for nonzero modes, \(e^{\pi i \left[ N (k)+ N (L-k)\right] }\) (\(1\le k < \frac{L}{2}\)) and \(e^{\pi i N (\frac{L}{2})}\). Therefore, the only Hamiltonian terms contributing are those with an even number of quadrature operators acting on the \(k=\frac{L}{2}\) mode or an even total number of quadrature operators acting on a \((k,L-k)\) mode pair, since each quadrature operator is odd under reflection. Since the Hamiltonian only contains an even number of quadrature operators per term, this implies that only an even number can act on the zero mode as well. We can also eliminate terms with an odd number of quadratures p(k) acting on a single mode. This follows from the fact that such an operator is purely imaginary while the Ansatz unitaries are real. These observations help us reduce the number of terms to be computed.

It is convenient to express the fields (Eq. (21)) as

$$\begin{aligned} \phi (x)= & {} \frac{1}{\sqrt{L}}\left[ \frac{q(0)}{\sqrt{\omega (0)}}+\frac{q (\frac{L}{2})}{\sqrt{\omega (\frac{L}{2})}}(-)^x+\sum _{1\le k< \frac{L}{2}} \sqrt{\frac{2}{\omega (k)}}\left( q_+(k)\cos \frac{2\pi kx}{L}\right. \right. \nonumber \\{} & {} \left. \left. -p_-(k)\sin \frac{2\pi kx}{L}\right) \right] \nonumber \\ \pi (x)= & {} \frac{1}{\sqrt{L}}\left[ \sqrt{\omega (0)} p(0)+\sqrt{\omega \left( \frac{L}{2}\right) } p\left( \frac{L}{2}\right) (-)^x+\sum _{1 \le k < \frac{L}{2}} \sqrt{2\omega (k)} \right. \nonumber \\{} & {} \left. \left( p_+(k)\cos \frac{2\pi kx}{L}+q_-(k)\sin \frac{2\pi kx}{L}\right) \right] \end{aligned}$$
(B1)

in terms of the linear combinations of quadratures,

$$\begin{aligned} q_\pm (k)=\frac{1}{\sqrt{2}}\left( q(k)\pm q(L-k)\right) \ ,\ \ p_\pm (k)=\frac{1}{\sqrt{2}}\left( p(k)\pm p(L-k)\right) \ ,\ \ 1 \le k < \frac{L}{2} \end{aligned}$$
(B2)

which can be implemented with beam splitters.

Fig. 15
figure 15

Alternative quantum circuit to the one in Fig. 5

The Hamiltonian can be written as

$$\begin{aligned} H= & {} \frac{\omega (0)}{2} \left[ q^2(0)+p^2(0)\right] + \frac{\omega (\frac{L}{2})}{2} \left[ q^2(\frac{L}{2}) + p^2( \frac{L}{2}) \right] \nonumber \\{} & {} + \sum _{1\le k< \frac{L}{2}} \frac{\omega (k)}{2} \left[ q_+^2(k)+q_-^2(k)+p_+^2(k)+p_-^2(k)\right] ] \nonumber \\{} & {} + \frac{\Omega ^2 - m^2}{2}\left[ \frac{q^2(0)}{\omega (0)}+\frac{q^2(L/2)}{\omega (\frac{L}{2})} + \sum _{1 \le k< \frac{L}{2}} \frac{1}{\omega (k)} \left( q_+^2(k)+p_-^2(k)\right) \right] \nonumber \\{} & {} + \frac{\lambda }{24L}\left[ \frac{q^4(0)}{\omega ^2 (0)}+\frac{q^4(\frac{L}{2})}{\omega ^2 (\frac{L}{2})}+6\frac{q^2(0)q^2( \frac{L}{2})}{\omega (0) \omega (\frac{L}{2})} + 6\left( \frac{q^2(0)}{\omega (0)} + \frac{q^2(\frac{L}{2})}{\omega (\frac{L}{2})} \right) \right. \nonumber \\{} & {} \sum _{1\le k< \frac{L}{2}} \frac{1}{\omega (k)} \left( q_+^2(k)+p_-^2(k)\right) \nonumber \\{} & {} + \frac{1}{2}\sum _{1\le k< \frac{L}{2}}\frac{1}{\omega ^2(k)} \left[ 3\left( q_+^2(k)+p_-^2(k)\right) ^2\left( 1-\delta _{k,\frac{L}{4}} \right) +4\left( q_+^4(k)+p_-^4(k)\right) \delta _{k,\frac{L}{4}} \right] \nonumber \\{} & {} + 3\sum _{1\le k< k' < \frac{L}{2}} \frac{1}{\omega (k) \omega (k')} \left[ 2\left( q_+^2(k)+p_-^2(k)\right) \left( q_+^2(k')+p_-^2(k')\right) \right. \nonumber \\{} & {} \left. \left. +\left( q_+^2(k)-p_-^2(k)\right) \left( q_+^2(k')-p_-^2(k')\right) \delta _{k+k',\frac{L}{2}} \right] \right] \end{aligned}$$
(B3)

In the VQE circuit shown in Fig. 5, we used a two-mode squeezer to generate all of the squeezed states, including the \(k=0, \frac{L}{2}\) modes. We also applied 50/50 beamsplitters to all pairs of qumodes in order to implement the transformation (B2). For simulations, the circuit in Fig. 5 results in significant sampling error from computing derivatives with respect to \(\Gamma \), even when using the parameter shift rule. This sampling error can be mitigated on actual CV hardware by increasing the magnitude of the shifts on the \(\Gamma \) parameter (up to the limit the platform can handle). However, in a finite Hilbert space necessitated by limitations of simulations, this greatly increases truncation error. We therefore implemented the equivalent circuit shown in Fig. 15, instead.

We calculated expectation values of quadratures that contribute to the expectation value of the Hamiltonian using photon number measurements. The expectation value \(\langle q^2(k)\rangle \) was computed in (39). More generally, we have

$$\begin{aligned} \langle q^{2n}(k)\rangle = \frac{2^n}{(2n)!}\frac{d^{2n}}{d\Gamma ^{2n}}\left\langle {\Phi (\Gamma )}\right| N_\text {anc}^{n}\left| {\Phi (\Gamma )}\right\rangle \end{aligned}$$
(B4)

where \(\left| {\Phi (\Gamma )}\right\rangle \) is given in Eq. (38). This follows from the fact that the CX gate \(e^{i\Gamma p_\text {anc}\otimes q(k)}\) transforms \(q_\text {anc} \rightarrow q_\text {anc}+\Gamma q(k)\), \(p_\text {anc} \rightarrow p_\text {anc}\).

We re-expressed these derivatives as linear combinations of expectation values using CX gates with different parameters \(\Gamma \); see, Eq. (40) for \(\langle q^2(k)\rangle \). For the quartic term, \(\langle q^4(k)\rangle \), we used a five-term parameter shift:

$$\begin{aligned} \langle q^4(k)\rangle= & {} \frac{1}{6s^4}\Big [ \left\langle {\Phi (2s)}\right| N_\text {anc} \left| {\Phi (2s)}\right\rangle + \left\langle {\Phi (-2s)}\right| N_\text {anc} \left| {\Phi (-2s)}\right\rangle - 4\left\langle {\Phi (s)}\right| N_\text {anc} \left| {\Phi (s)}\right\rangle \nonumber \\- & {} 4\left\langle {\Phi (-s)}\right| N_\text {anc} \left| {\Phi (-s)}\right\rangle +6 \left\langle {\Phi (0)}\right| N_\text {anc} \left| {\Phi (0)}\right\rangle \Big ] \end{aligned}$$
(B5)

For modes with \(1\le k < \frac{L}{2}\), we considered pairs \((k,L-k)\) as one another’s ancilla by making the replacements \(N_\text {anc}\rightarrow N(k)+N(L-k)\), and \(e^{-i\Gamma p_\text {anc}\otimes q(k)}\rightarrow e^{-i\Gamma p(k)\otimes q(L-k)}\).

Appendix C: Derivatives for physical parameters

Here, we discuss further the implementation of derivatives of expectation values with respect to physical parameters which can be computed exactly in quantum circuits. As we discussed, the introduction of parameter shift rules allowed us to compute derivatives with respect to the squeezing parameters r(k) (Eq. (34)). This was enabled by the Gaussian form of our Ansatz. It is of great interest to extend results of exact computation of derivatives to cases where parameter shift rules are challenging to implement, such as in the presence of non-Gaussian gates.

To this end, one can leverage the tools of bosonic qiskit [30] which allow coupling between qubits and qumodes. Such couplings exist in hybrid quantum systems such as circuit QED [45]. In particular, one can take advantage of the Selective Number-dependent Arbitrary Phase (SNAP) gate,

$$\begin{aligned} \text {SNAP}_n\left( \theta \right) =e^{-i\theta Z\otimes \left| {n}\right\rangle \left\langle {n}\right| } \end{aligned}$$
(C1)

which involves a phase that is conditioned on the photon number state \(\left| {n}\right\rangle \) of the physical qumode.

Fig. 16
figure 16

Quantum circuit employing two ancilla qubits for the calculation of derivatives with respect to squeezing parameters for the modes with \(k=0,\frac{L}{2}\). It features single-mode squeezers, an unspecified qumode unitary U, Hadamard gates on the qubits, and SNAP gates entangling qumodes and qubits. At the end, qubits are measured in the computational basis whereas the (unspecified) Hermitian operator A is measured on the qumode

To compute derivatives with respect to a squeezing parameter r(k), notice that for the expectation value of a Hermitian operator A in a state constructed using a squeezer \(S(r) = e^{\frac{i}{2} (a^{\dagger 2} - a^2)}\) and an unspecified, possibly multi-modal, unitary U, taking a derivative with respect to r, we obtain

$$\begin{aligned} \frac{{\text{ d }}}{{\text{ d }}r} \left\langle {0}\right| S^\dagger (r)U^\dagger AUS(r) \left| {0}\right\rangle = {\sqrt{2}} \Re { \left\langle {2}\right| S^\dagger (r)U^\dagger AUS(r)\left| {0}\right\rangle } \end{aligned}$$
(C2)

involving number states \(\left| {0}\right\rangle \) and \(\left| {2}\right\rangle \). For a single qumode, this is implemented with the quantum circuit in Fig. 16. This circuit allows us to compute derivatives using an ancilla. We first apply a squeezer of arbitrary squeezing t that generates all the even number states, and then, we use SNAP gates to change the states of the qubits. The qubit states allow us to label the number states for the physical qumode. By projecting the ancilla qubit labeled 1 onto the state \(\left| {1}\right\rangle \), we pick out the states of the qumode that we are interested in: \(\left| {0}\right\rangle ,\left| {2}\right\rangle \). Finally, we measure \(Z_0\otimes A\). To obtain (C2), we need divide by the appropriate factor which contains the matrix elements \(\left\langle {0}\right| S(t)\left| {0}\right\rangle \) and \(\left\langle {2}\right| S(t)\left| {0}\right\rangle \). This method is an extension of the Hadamard test [46] to hybrid systems. We used the circuit of Fig. 16 for the \(k = 0, \frac{L}{2}\) modes.

Fig. 17
figure 17

Quantum circuit employing two ancilla qubits for the calculation of derivatives with respect to squeezing parameters for pairs of modes \((k,L-k)\) with \(1\le k <\frac{L}{2}\). It features single-mode squeezers, an unspecified qumode unitary U, Hadamard gates on the qubits, and controlled beam splitter, rotation, and SNAP gates entangling qumodes and qubits. At the end, qubits are measured in the computational basis whereas the photon number is measured on the qumodes

For modes with \(1\le k < \frac{L}{2}\), we treat them as pairs \((k,L-k)\). The quantum circuit for derivatives with respect to squeezing parameters in this case is slightly modified. We need include additional circuit elements that incorporate some of bosonic qiskit’s controlled Gaussian operations, namely a controlled beam splitter and rotation gate. The resulting circuit is shown in Fig. 17.

Turning to derivatives with respect to \(\phi _C\), they can be computed by removing the displacement D from the circuit, taking \(H\rightarrow D^\dagger H D\), and expressing it as a polynomial in \(\phi _C\). In general, derivatives with respect to \(\phi _C\) are straightforward. The only terms affected by the displacement are those that contain the zero-mode quadrature. Thus, we need only compute \(\langle D^\dagger q^2(0) D\rangle \) and \(\langle D^\dagger q^4(0) D \rangle \) in a state that lies in the even parity subspace (squeezed vacuum). Dropping terms that are odd in the quadrature q(0), we easily obtain

$$\begin{aligned} \frac{{\text{ d }}}{{\text{ d }}c}\langle D^\dagger (c)q^2(0)D(c) \rangle =2c \ . \end{aligned}$$
(C3)

For the quartic term, we obtain

$$\begin{aligned} \frac{d}{dc} \langle D^\dagger (c)q^4(0)D(c)\rangle = 12\langle D^\dagger (c)q^2(0)D(c) \rangle -8c^3\ , \end{aligned}$$
(C4)

expressing the derivative in terms of the expectation value of \(q^2(0)\) which has already been computed (Eq. (40)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, S., Siopsis, G. Quantum computation of phase transition in interacting scalar quantum field theory. Quantum Inf Process 22, 396 (2023). https://doi.org/10.1007/s11128-023-04149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04149-0

Keywords

Navigation