Skip to main content
Log in

A relation among tangle, 3-tangle, and von Neumann entropy of entanglement for three qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we derive a general formula of the tangle for pure states of three qubits and present three explicit local unitary (LU) polynomial invariants. Our result goes beyond the classical work of tangle, 3-tangle, and von Neumann entropy of entanglement for Acín et al.’ Schmidt decomposition (ASD) of three qubits by connecting the tangle, 3-tangle, and von Neumann entropy for ASD with Acín et al.’s LU invariants. In particular, our result reveals a general relation among tangle, 3-tangle, and von Neumann entropy, together with a relation among their averages. The relations can help us find the entangled states satisfying distinct requirements for tangle, 3-tangle, and von Neumann entropy. Moreover, we obtain all the states of three qubits of which tangles, concurrence, 3-tangle, and von Neumann entropy do not vanish and these states are endurable when one of three qubits is traced out. We indicate that for the three-qubit W state, its average von Neumann entropy is maximal only within the W SLOCC class, and that under ASD the three-qubit GHZ state is the unique state of which the reduced density operator obtained by tracing any two qubits has the maximal von Neumann entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    MathSciNet  ADS  Google Scholar 

  4. Verstraete, F., et al.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    MathSciNet  ADS  Google Scholar 

  5. Li, X., Li, D.: Classification of general n-Qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)

    ADS  Google Scholar 

  6. Li, X., Li, D.: Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states. Phys. Rev. A 86, 042332 (2012)

    ADS  Google Scholar 

  7. Carteret, H.A., Sudberry, A.: Local symmetry properties of pure three-qubit states. J. Phys. A 33, 4981 (2000)

    MathSciNet  MATH  ADS  Google Scholar 

  8. Acín, A., Andrianov, A., Costa, L., Jané, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    ADS  Google Scholar 

  9. Acín, A., Andrianov, A., Jané, E., Tarrach, R.: Three-qubit pure-state canonical forms. J. Phys. A: Math. Theor. 34, 6725 (2001)

    MathSciNet  MATH  ADS  Google Scholar 

  10. Grassl, M., Rotteler, M., Beth, T.: Computing local invariants of quantum-bit systems. Phys. Rev. A 58, 1833 (1998)

    MathSciNet  ADS  Google Scholar 

  11. Kraus, B.: Local unitary equivalence of multipartite pure states. Phys. Rev. Lett. 104, 020504 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  12. Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    ADS  Google Scholar 

  14. Soo, C., Lin, C.C.Y.: Wigner rotations, Bell states, and Lorentz invariance of entanglement and von Neumann entropy. I. J. Quantum Info. 2, 183–200 (2004)

    MATH  ADS  Google Scholar 

  15. Kallin, A.B., et al.: Valence bond and von Neumann entanglement entropy in Heisenberg ladders. Phys. Rev. Lett. 103, 117203 (2009)

    ADS  Google Scholar 

  16. You, Wen-Long., et al.: von Neumann entropy spectra and entangled excitations in spin-orbital models. Phys. Rev. B 86, 094412 (2012)

    ADS  Google Scholar 

  17. Koscik, P.: The von Neumann entanglement entropy for Wigner-crystal states in one dimensional N-particle systems. Phys. Lett. A 379, 293 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gour, G., Wallach, N.: All maximally entangled four qubits states. J. Math. Phys. 51(11), 112201 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  19. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Alonso-Serrano, Ana, Visser, Matt: Multipartite analysis of average-subsystem entropies. Phys. Rev. A 96, 052302 (2017)

    ADS  Google Scholar 

  21. Chen, K., et al.: Concurrence-based entanglement measure for Werner states. Rep. Math. Phys. 58, 325–334 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  22. Kumar, S., Pandey, A.: Entanglement in random pure states: spectral density and average von Neumann entropy. J. Phys. A: Math. Theor. 44, 445301 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  23. Mollabashi, A., et al.: Pseudo-entropy in free quantum field theories. Phys. Rev. Lett. 126, 081601 (2021)

    MathSciNet  ADS  Google Scholar 

  24. van Regemortel, M., et al.: Entanglement entropy scaling transition under competing monitoring protocols. Phys. Rev. Lett. 126, 123604 (2021)

    ADS  Google Scholar 

  25. Styliaris, G., et al.: Information scrambling over bipartitions: equilibration, entropy production, and typicality. Phys. Rev. Lett. 126, 030601 (2021)

    MathSciNet  ADS  Google Scholar 

  26. Gullans, M.J., et al.: Scalable probes of measurement-induced criticality. Phys. Rev. Lett. 125, 070606 (2020)

    ADS  Google Scholar 

  27. Vidmar, L., et al.: Volume law and quantum criticality in the entanglement entropy of excited eigenstates of the quantum Ising model. Phys. Rev. Lett. 121, 220602 (2018)

    ADS  Google Scholar 

  28. Liu, Z.-W., et al.: Generalized entanglement entropies of quantum designs. Phys. Rev. Lett. 120, 130502 (2018)

    MathSciNet  ADS  Google Scholar 

  29. Vidmar, L., et al.: Entanglement entropy of eigenstates of quantum chaotic Hamiltonians. Phys. Rev. Lett. 119, 220603 (2017)

    MathSciNet  ADS  Google Scholar 

  30. Vidmar, L., et al.: Entanglement entropy of eigenstates of quadratic fermionic Hamiltonians. Phys. Rev. Lett. 119, 020601 (2017)

    MathSciNet  ADS  Google Scholar 

  31. Pastur, L., et al.: Area law scaling for the entropy of disordered quasifree fermions. Phys. Rev. Lett. 113, 150404 (2014)

    ADS  Google Scholar 

  32. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  33. Datta, A.: Negativity of random pure states. Phys. Rev. A 81, 052312 (2010)

    MathSciNet  ADS  Google Scholar 

  34. Sen, S.: Average entropy of a quantum subsystem. Phys. Rev. Lett. 77, 1 (1996)

    ADS  Google Scholar 

  35. Lubkin, E.: Entropy of an n-system from its correlation with a k-reservoir. J. Math. Phys. 19, 1028 (1978)

    MATH  ADS  Google Scholar 

  36. Linden, N., Popescu, S., Sudbery, A.: Nonlocal parameters for multiparticle density matrices. Phys. Rev. Lett. 83, 243 (1999)

    ADS  Google Scholar 

  37. Sudbery, A.: On local invariants of pure three-qubit states. J. Phys. A 34, 643–652 (2001)

    MathSciNet  MATH  ADS  Google Scholar 

  38. Leifer, M.S., Linden, N., Winter, A.: Measuring polynomial invariants of multiparty quantum states. Phys. Rev. A 69, 052304 (2004)

    MathSciNet  ADS  Google Scholar 

  39. Zhang, T.-G., et al.: Local unitary invariants for multipartite states. Int. J. Theor. Phys. 52, 3020–3025 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Schlienz, J., Mahler, G.: The maximal entangled three-particle state is unique. Phys. Lett. A 224, 39 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  41. Viehmann, O., Eltschka, C., Siewert, J.: Polynomial invariants for discrimination and classification of four-qubit entanglement. Phys. Rev. A 83, 052330 (2011)

    ADS  Google Scholar 

  42. Wong, A., Christensen, N.: Potential multiparticle entanglement measure. Phys. Rev. A 63, 044301 (2001)

    ADS  Google Scholar 

  43. Luque, J.-G., Thibon, J.-Y.: Polynomial invariants of four qubits. Phys. Rev. A 67, 042303 (2003)

    MathSciNet  ADS  Google Scholar 

  44. Lévay, P.: On the geometry of a class of N-qubit entanglement monotones. J. Phys. A: Math. Gen. 38, 9075 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  45. Osterloh, A., Siewert, J.: Constructing N-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    ADS  Google Scholar 

  46. Luque, J.-G., Thibon, J.-Y.: Algebraic invariants of five qubits. J. Phys. A: Math. Gen. 39, 371 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  47. Teodorescu-Frumosu, M., Jaeger, G.: Quantum Lorentz-group invariants of n-qubit systems. Phys. Rev. A 67, 052305 (2003)

    MathSciNet  ADS  Google Scholar 

  48. Li, Dafa: Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices. Quant. Inf. Process. 17, 132 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  49. Li, Dafa, Guo, Yu.: Local unitary equivalence of the SLOCC class of three qubits. J. Phys. A: Math. Theor. 53, 385302 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Li, Dafa: The n-tangle of odd n qubits. Quant. Inf. Process. 11, 481 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  51. Williamson, Mark S., et al.: Geometric local invariants and pure three-qubit states. Phys. Rev. A 83, 062308 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafa Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Calculation of tangles

(A) Calculating \(\tau _{AB}\)

From the definition of \(\tau _{AB}\) in Eq. (2), we obtain the characteristic polynomial (CP) of \(\rho _{AB}\overline{\rho _{AB}}\) as follows,

$$\begin{aligned} (X^{2}-\Delta X+\Theta ^{2})X^{2}, \end{aligned}$$
(A2)

where

$$\begin{aligned} \Theta= & {} |(c_{0}c_{7}-c_{2}c_{5})^{2}+(c_{1}c_{6}-c_{3}c_{4})^{2} \nonumber \\{} & {} -2(c_{0}c_{7}+c_{2}c_{5})(c_{1}c_{6}+c_{3}c_{4}) \nonumber \\{} & {} +4c_{0}c_{3}c_{5}c_{6}+4c_{1}c_{2}c_{4}c_{7}|, \end{aligned}$$
(A3)
$$\begin{aligned} \Delta= & {} 2\left( \left| c_{0}\right| ^{2}+\left| c_{1}\right| ^{2}\right) \left( \left| c_{6}\right| ^{2}+\left| c_{7}\right| ^{2}\right) \nonumber \\{} & {} +2\left( \left| c_{2}\right| ^{2}+\left| c_{3}\right| ^{2}\right) \left( \left| c_{4}\right| ^{2}+\left| c_{5}\right| ^{2}\right) \nonumber \\{} & {} +2\left| c_{0}c_{6}^{*}+c_{1}c_{7}^{*}\right| ^{2}+2\left| c_{2}c_{4}^{*}+c_{3}c_{5}^{*}\right| ^{2} \nonumber \\{} & {} -4*re(\left( c_{0}c_{2}^{*}+c_{1}c_{3}^{*}\right) \left( c_{6}c_{4}^{*}+c_{7}c_{5}^{*}\right) ) \nonumber \\{} & {} -4*re(\left( c_{0}c_{4}^{*}+c_{1}c_{5}^{*}\right) \left( c_{6}c_{2}^{*}+c_{7}c_{3}^{*}\right) ), \end{aligned}$$
(A4)

and re(c) indicates the real part of a complex number c. Moreover, one can find

$$\begin{aligned} 4\Theta =\tau _{ABC}\text {.} \end{aligned}$$
(A5)

Hence, the eigenvalues of \(\rho _{AB}\overline{\rho _{AB}}\) are 0, 0,  and \( \frac{\Delta \pm \sqrt{\Delta ^{2}-4\Theta ^{2}}}{2}\). It is known that \( \rho _{AB}\overline{\rho _{AB}}\) has only real and nonnegative eigenvalues [13]. Then, by the definition of \(\tau _{AB}\) in Eq. (2), we obtain

$$\begin{aligned} \tau _{AB}= & {} \left( \sqrt{\frac{\Delta +\sqrt{\Delta ^{2}-4\Theta ^{2}}}{2}} -\sqrt{\frac{\Delta -\sqrt{\Delta ^{2}-4\Theta ^{2}}}{2}}\right) ^{2} \nonumber \\= & {} \Delta -2\Theta \nonumber \\= & {} \Delta -\frac{\tau _{ABC}}{2}. \end{aligned}$$
(A6)

(B) Calculating \(\tau _{AC}\)

Similarly, we can obtain the CP of \(\rho _{AC}\overline{\rho _{AC}}\) as follows,

$$\begin{aligned} X^{2}(X^{2}-\Phi X+\Upsilon ^{2}), \end{aligned}$$
(A7)

where

$$\begin{aligned} \Upsilon =\Theta , \end{aligned}$$
(A8)
$$\begin{aligned} \Phi= & {} 2\left( \left| c_{0}\right| ^{2}+\left| c_{2}\right| ^{2}\right) \left( \left| c_{5}\right| ^{2}+\left| c_{7}\right| ^{2}\right) \nonumber \\{} & {} +2\left( \left| c_{1}\right| ^{2}+\left| c_{3}\right| ^{2}\right) \left( \left| c_{4}\right| ^{2}+\left| c_{6}\right| ^{2}\right) \nonumber \\{} & {} +2\left| c_{0}c_{5}^{*}+c_{2}c_{7}^{*}\right| ^{2}+2\left| c_{1}c_{4}^{*}+c_{3}c_{6}^{*}\right| ^{2} \nonumber \\{} & {} -4*re(\left( c_{0}c_{1}^{*}+c_{2}c_{3}^{*}\right) \left( c_{5}c_{4}^{*}+c_{7}c_{6}^{*}\right) ) \nonumber \\{} & {} -4*re(\left( c_{0}c_{4}^{*}+c_{2}c_{6}^{*}\right) \left( c_{5}c_{1}^{*}+c_{7}c_{3}^{*}\right) ). \nonumber \\{} & {} \end{aligned}$$
(A9)

Then, we obtain

$$\begin{aligned} \tau _{AC}=\Phi -2\Upsilon =\Phi -\frac{\tau _{ABC}}{2}. \end{aligned}$$
(A10)

(C) Calculating \(\tau _{BC}\)

Similarly, the characteristic polynomial of \(\rho _{BC}\overline{\rho _{BC}}\) is given by

$$\begin{aligned} X^{2}(X^{2}-\Psi X+\digamma ^{2}), \end{aligned}$$
(A11)

where

$$\begin{aligned} \digamma =\Theta , \end{aligned}$$
(A12)
$$\begin{aligned} \Psi= & {} 2\left( \left| c_{0}\right| ^{2}+\left| c_{4}\right| ^{2}\right) \left( \left| c_{3}\right| ^{2}+\left| c_{7}\right| ^{2}\right) \nonumber \\{} & {} +2\left( \left| c_{1}\right| ^{2}+\left| c_{5}\right| ^{2}\right) \left( \left| c_{2}\right| ^{2}+\left| c_{6}\right| ^{2}\right) \nonumber \\{} & {} +2\left| c_{0}c_{3}^{*}+c_{4}c_{7}^{*}\right| ^{2}+2\left| c_{1}c_{2}^{*}+c_{5}c_{6}^{*}\right| ^{2} \nonumber \\{} & {} -4*re(\left( c_{0}c_{1}^{*}+c_{4}c_{5}^{*}\right) \left( c_{3}c_{2}^{*}+c_{7}c_{6}^{*}\right) ) \nonumber \\{} & {} -4*re(\left( c_{0}c_{2}^{*}+c_{4}c_{6}^{*}\right) \left( c_{3}c_{1}^{*}+c_{7}c_{5}^{*}\right) ). \end{aligned}$$
(A13)

Then, we obtain

$$\begin{aligned} \tau _{BC}=\Psi -2\digamma =\Psi -\frac{\tau _{ABC}}{2}. \end{aligned}$$
(A14)

(D) By solving CKW equations [13]

$$\begin{aligned} \tau _{AB}+\tau _{AC}+\tau _{ABC}= & {} \tau _{A(BC)}, \end{aligned}$$
(A15)
$$\begin{aligned} \tau _{AB}+\tau _{BC}+\tau _{ABC}= & {} \tau _{B(AC)}, \end{aligned}$$
(A16)
$$\begin{aligned} \tau _{AC}+\tau _{BC}+\tau _{ABC}= & {} \tau _{C(AB)}, \end{aligned}$$
(A17)

where \(\tau _{A(BC)}=4\det \rho _{A}\), \(\tau _{B(AC)}=4\det \rho _{B}\), and \( \tau _{C(AB)}=4\det \rho _{C}\), we obtain

$$\begin{aligned} \tau _{AB} =&\frac{\tau _{A(BC)}+\tau _{B(AC)}-\tau _{C(AB)}-\tau _{ABC}}{2},\end{aligned}$$
(A18)
$$\begin{aligned} \tau _{AC} =&\frac{\tau _{A(BC)}-\tau _{B(AC)}+\tau _{C(AB)}-\tau _{ABC}}{2},\end{aligned}$$
(A19)
$$\begin{aligned} \tau _{BC} =&\frac{-\tau _{A(BC)}+\tau _{B(AC)}+\tau _{C(AB)}-\tau _{ABC}}{2} . \end{aligned}$$
(A20)

When the 3-tangle \(\tau _{ABC}\) is zero, we obtain the following,

$$\begin{aligned} \Delta= & {} \frac{\tau _{A(BC)}+\tau _{B(AC)}-\tau _{C(AB)}}{2}, \end{aligned}$$
(A21)
$$\begin{aligned} \Phi= & {} \frac{\tau _{A(BC)}-\tau _{B(AC)}+\tau _{C(AB)}}{2}, \end{aligned}$$
(A22)
$$\begin{aligned} \Psi= & {} \frac{-\tau _{A(BC)}+\tau _{B(AC)}+\tau _{C(AB)}}{2}. \end{aligned}$$
(B1)

Obviously, \(\Delta \), \(\Phi \), \(\Psi \) are simple polynomial of degree 4 although it is hard to compute \(\det \rho _{A}\), \(\det \rho _{B}\), and \(\det \rho _{C}\).

Appendix B The GHZ state is unique state of three qubits which has maximally von Neumann entropy

Claim: If a state of three qubits possesses the maximal von Neumann entropy, \(S(\rho _{\mu })=\ln 2\), where \(\mu \in \{A,B,C\}\), then the state must be GHZ.

Proof: Clearly, \(S(\rho _{\mu })\) increases strictly monotonically as \(\alpha _{\mu }\) increases. Therefore, \(S(\rho _{\mu })=\ln 2\) iff \(\alpha _{\mu }=1/4\). Thus, we have the following equations

$$\begin{aligned} \alpha _{A}= & {} J_{2}+J_{3}+J_{4}=1/4, \\ \alpha _{B}= & {} J_{1}+J_{3}+J_{4}=1/4, \\ \alpha _{C}= & {} J_{1}+J_{2}+J_{4}=1/4, \end{aligned}$$
(B2)

and we obtain

$$\begin{aligned} J_{1}=J_{2}=J_{3}. \end{aligned}$$
(B3)

Using Tables 1 and 2, equation (B1) leads to

$$\begin{aligned} \lambda _{0}^{4}-\lambda _{0}^{2}(1-\lambda _{1}^{2})+1/4=0. \end{aligned}$$
(B4)

From (B5), we have a solution

$$\begin{aligned} \lambda _{1}= & {} 0, \end{aligned}$$
(B5)
$$\begin{aligned} \lambda _{0}= & {} 1/\sqrt{2}, \end{aligned}$$
(B6)
$$\begin{aligned} \lambda _{2}^{2}+\lambda _{3}^{2}+\lambda _{4}^{2}= & {} 1/2. \end{aligned}$$
(B7)

Using \(J_{2}=J_{3}\) in Eq. (B4), we have

$$\begin{aligned} \lambda _{2}=\lambda _{3}. \end{aligned}$$
(B8)

From that \(J_{1}=J_{2}\) in Eq. (B4), we obtain

$$\begin{aligned} \lambda _{2}\lambda _{3}=\lambda _{0}\lambda _{2}. \end{aligned}$$
(B9)

There are two scenarios for \(\lambda _{2}\): \(\lambda _{2}\ne 0\) and \( \lambda _{2}=0\). The first scenario is impossible since if \(\lambda _{2}\ne 0\), then from Eqs. (B7B9B10), we obtain

$$\begin{aligned} \lambda _{0}=\lambda _{2}=\lambda _{3}=1/\sqrt{2}. \end{aligned}$$
(B10)

From Eq. (B8), we know clearly that Eq. (B11) cannot hold. Therefore, \(\lambda _{2}\) must be zero.

With \(\lambda _2=0\), from Eqs. (B8B9) we obtain

$$\begin{aligned} \lambda _{2}= & {} \lambda _{3}=0, \end{aligned}$$
(B11)
$$\begin{aligned} \lambda _{4}= & {} 1/\sqrt{2}. \end{aligned}$$
(B12)

The state satisfying Eqs. (B6B7B12B13 ) is just GHZ.

Appendix C The extrema for W SLOCC class

We next find an extrema of m with the constraint of \(\sum _{i=0}^{3}\lambda _{i}^{2}=1\) for the W SLOCC class. For states of W SLOCC class, \(\alpha _{A}=\lambda _{0}^{2}(\lambda _{2}^{2}+\lambda _{3}^{2})\), \(\alpha _{B}=\lambda _{3}^{2}(\lambda _{0}^{2}+\lambda _{2}^{2})\), and \(\alpha _{C}=\lambda _{2}^{2}(\lambda _{0}^{2}+\lambda _{3}^{2})\)

We define

$$\begin{aligned} F=\frac{1}{3}(S(\rho _{A})+S(\rho _{B})+S(\rho _{C}))+\ell (\sum _{i=0}^{3}\lambda _{i}^{2}-1), \end{aligned}$$
(B13)

where \(\ell \) is the Lagrange multiplier. In light of the constrained extreme theorem, we need to solve the equations \(\frac{\partial F}{\partial \lambda _{i}}=0\), for \(i=0,1,2,3\), and \(\frac{\partial F}{\partial \ell }=0\) to find the extrema. From \(\frac{\partial F}{\partial \lambda _{1}}=2\ell \lambda _{1}=0\), we obtain \(\lambda _{1}=0\). Then, F is reduced to

$$\begin{aligned} F=\frac{1}{3}(S(\rho _{A})+S(\rho _{B})+S(\rho _{C}))+\ell (\lambda _{0}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}-1). \end{aligned}$$
(C1)

From \(\frac{\partial F}{\partial \ell }=0\), we obtain

$$\begin{aligned} \lambda _{0}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=1. \end{aligned}$$
(C2)

From Eq. (C2), we obtain

$$\begin{aligned} \frac{\partial F}{\partial \lambda _{0}}=\frac{1}{3}\left[ \frac{\partial S(\rho _{A})}{\partial \lambda _{0}}+\frac{\partial S(\rho _{B})}{\partial \lambda _{0}}+\frac{\partial S(\rho _{C})}{\partial \lambda _{0}} \right] +2\ell \lambda _{0}, \end{aligned}$$
(C3)

where

$$\begin{aligned} \frac{\partial S(\rho _{\mu })}{\partial \lambda _{0}}=\frac{dS(\rho _{\mu }) }{d\alpha _{\mu }}\frac{\partial \alpha _{\mu }}{\partial \lambda _{0}}, \mu \in \{A,B,C\}. \end{aligned}$$
(C4)

The derivative of \(S(\rho _{A})\) is

$$\begin{aligned} \frac{dS(\rho _{A})}{d\alpha _{A}}=-\left[ \frac{d\eta _{A}^{(1)}}{d\alpha _{A}}(1+\ln \eta _{A}^{(1)})+\frac{d\eta _{A}^{(2)}}{d\alpha _{A}}(1+\ln \eta _{A}^{(2)})\right] , \end{aligned}$$
(C5)

where

$$\begin{aligned} \frac{d\eta _{A}^{(1)}}{d\alpha _{A}}=-\frac{1}{\sqrt{1-4\alpha _{A}}},\frac{ d\eta _{A}^{(2)}}{d\alpha _{A}}=\frac{1}{\sqrt{1-4\alpha _{A}}}. \end{aligned}$$
(C6)

Thus,

$$\begin{aligned} \frac{dS(\rho _{A})}{d\alpha _{A}}= & {} -\left[ -\frac{1+\ln \eta _{A}^{(1)}}{ \sqrt{1-4\alpha _{A}}}+\frac{1+\ln \eta _{A}^{(2)}}{\sqrt{1-4\alpha _{A}}} \right] \nonumber \end{aligned}$$
(C7)
$$\begin{aligned}= & {} -\frac{1}{\sqrt{1-4\alpha _{A}}}\ln \frac{\eta _{A}^{(2)}}{\eta _{A}^{(1)} }. \end{aligned}$$
(C8)

Similarly, we obtain

$$\begin{aligned} \frac{dS(\rho _{B})}{d\alpha _{B}}= & {} -\frac{1}{\sqrt{1-4\alpha _{B}}}\ln \frac{\eta _{B}^{(2)}}{\eta _{B}^{(1)}}, \end{aligned}$$
(C9)
$$\begin{aligned} \frac{dS(\rho _{C})}{d\alpha _{C}}= & {} -\frac{1}{\sqrt{1-4\alpha _{C}}}\ln \frac{\eta _{C}^{(2)}}{\eta _{C}^{(1)}}. \end{aligned}$$
(C10)

From Eqs. (C5C8C9C10), we obtain

$$\begin{aligned} \frac{\partial S(\rho _{A})}{\partial \lambda _{0}}= & {} -\frac{2\lambda _{0}(\lambda _{2}^{2}+\lambda _{3}^{2})}{\sqrt{1-4\alpha _{A}}}\ln \frac{ \eta _{A}^{(2)}}{\eta _{A}^{(1)}}, \end{aligned}$$
(C11)
$$\begin{aligned} \frac{\partial S(\rho _{B})}{\partial \lambda _{0}}= & {} -\frac{2\lambda _{0}\lambda _{3}^{2}}{\sqrt{1-4\alpha _{B}}}\ln \frac{\eta _{B}^{(2)}}{\eta _{B}^{(1)}}, \end{aligned}$$
(C12)
$$\begin{aligned} \frac{\partial S(\rho _{C})}{\partial \lambda _{0}}= & {} -\frac{2\lambda _{0}\lambda _{2}^{2}}{\sqrt{1-4\alpha _{C}}}\ln \frac{\eta _{C}^{(2)}}{\eta _{C}^{(1)}}. \end{aligned}$$
(C13)

From Eqs. (C4C11C12C13) and \(\frac{ \partial F}{\partial \lambda _{0}}=0\), we obtain

$$\begin{aligned} \ell= & {} \frac{1}{3}\left( \frac{\lambda _{2}^{2}+\lambda _{3}^{2}}{\sqrt{ 1-4\alpha _{A}}}\ln \frac{\eta _{A}^{(2)}}{\eta _{A}^{(1)}} \right. \nonumber \\{} & {} +\frac{\lambda _{3}^{2}}{\sqrt{1-4\alpha _{B}}}\ln \frac{\eta _{B}^{(2)}}{ \eta _{B}^{(1)}} \nonumber \\{} & {} \left. +\frac{\lambda _{2}^{2}}{\sqrt{1-4\alpha _{C}}}\ln \frac{\eta _{C}^{(2)}}{\eta _{C}^{(1)}} \right) . \end{aligned}$$
(C14)

Similarly, we consider

$$\begin{aligned} \frac{\partial F}{\partial \lambda _{2}}=\frac{1}{3}\left( \frac{\partial S(\rho _{A})}{\partial \lambda _{2}}+\frac{\partial S(\rho _{B})}{\partial \lambda _{2}}+\frac{\partial S(\rho _{C})}{\partial \lambda _{2}}\right) +2\ell \lambda _{2}. \end{aligned}$$
(C15)

Clearly,

$$\begin{aligned} \frac{\partial S(\rho _{\mu })}{\partial \lambda _{2}}=\frac{dS(\rho _{\mu }) }{d\alpha _{\mu }}\frac{\partial \alpha _{\mu }}{\partial \lambda _{2}},\mu \in \{A,B,C\}. \end{aligned}$$
(C16)

From Eqs. (C8C9C10C15, C16) and \(\frac{\partial F}{\partial \lambda _{2}}=0\), we obtain

$$\begin{aligned} \ell= & {} \frac{1}{3}\left( \frac{\lambda _{0}^{2}}{\sqrt{1-4\alpha _{A}}}\ln \frac{\eta _{A}^{(2)}}{\eta _{A}^{(1)}} \right. \nonumber \\{} & {} +\frac{\lambda _{3}^{2}}{\sqrt{1-4\alpha _{B}}}\ln \frac{\eta _{B}^{(2)}}{ \eta _{B}^{(1)}} \nonumber \\{} & {} \left. +\frac{\lambda _{0}^{2}+\lambda _{3}^{2}}{\sqrt{1-4\alpha _{C}}} \ln \frac{\eta _{C}^{(2)}}{\eta _{C}^{(1)}} \right) . \end{aligned}$$
(C17)

Similarly, from \(\frac{\partial F}{\partial \lambda _{3}}=0\) we obtain

$$\begin{aligned} \ell= & {} \frac{1}{3}\left( \frac{\lambda _{0}^{2}}{\sqrt{1-4\alpha _{A}}}\ln \frac{\eta _{A}^{(2)}}{\eta _{A}^{(1)}} \right. \nonumber \\{} & {} +\frac{\lambda _{0}^{2}+\lambda _{2}^{2}}{\sqrt{1-4\alpha _{B}}}\ln \frac{ \eta _{B}^{(2)}}{\eta _{B}^{(1)}} \nonumber \\{} & {} \left. +\frac{\lambda _{2}^{2}}{\sqrt{1-4\alpha _{C}}}\ln \frac{\eta _{C}^{(2)}}{\eta _{C}^{(1)}}\right) . \end{aligned}$$
(C18)

From Eqs. (C3C14C17), we obtain

$$\begin{aligned} \frac{1-2\lambda _{0}^{2}}{\sqrt{1-4\alpha _{A}}}\ln \frac{\eta _{A}^{(2)}}{ \eta _{A}^{(1)}}=\frac{1-2\lambda _{2}^{2}}{\sqrt{1-4\alpha _{C}}}\ln \frac{ \eta _{C}^{(2)}}{\eta _{C}^{(1)}}. \end{aligned}$$
(C19)

From Eqs. (C3C14C18), we obtain

$$\begin{aligned} \frac{1-2\lambda _{0}^{2}}{\sqrt{1-4\alpha _{A}}}\ln \frac{\eta _{A}^{(2)}}{ \eta _{A}^{(1)}}=\frac{1-2\lambda _{3}^{2}}{\sqrt{1-4\alpha _{B}}}\ln \frac{ \eta _{B}^{(2)}}{\eta _{B}^{(1)}}. \end{aligned}$$
(C20)

From Eqs. (C3C17C18), we obtain

$$\begin{aligned} \frac{1-2\lambda _{3}^{2}}{\sqrt{1-4\alpha _{B}}}\ln \frac{\eta _{B}^{(2)}}{ \eta _{B}^{(1)}}=\frac{1-2\lambda _{2}^{2}}{\sqrt{1-4\alpha _{C}}}\ln \frac{ \eta _{C}^{(2)}}{\eta _{C}^{(1)}}. \end{aligned}$$
(C21)

When \(\lambda _{0}=\lambda _{2}=\lambda _{3}\), Eqs. (C19C20C21) hold. Via Eq. (C3), one can see that \(\lambda _{0}=\lambda _{2}=\lambda _{3}=1/\sqrt{3}\) is an extrema of m with the constraint \(\sum _{i=0}^{3}\lambda _{i}^{2}=1\).

Appendix D. CKW inequalities for GHZ SLOCC class

Note that for the GHZ SLOCC class, \(\lambda _{0}\lambda _{4}\ne 0\). There is also an additional constraint \(\sum _{i=0}^{4}\lambda _{i}^{2}=1\).

(A) When \(\lambda _{1}=\lambda _{3}=0\) and \(\lambda _{2}\ne 0\), we have

$$\begin{aligned} A=\frac{4}{3}(\lambda _{0}^{2}\lambda _{2}^{2}). \end{aligned}$$

Clearly,

$$\begin{aligned} A=\frac{4}{3}(\lambda _{0}^{2}\lambda _{2}^{2})\le \frac{4}{3}\left( \frac{ \lambda _{0}^{2}+\lambda _{2}^{2}}{2}\right) ^{2}=\frac{1}{3}\left( 1-\lambda _{4}^{2}\right) ^{2}<\frac{1}{3} \end{aligned}$$

Similarly, we can obtain \(A<\frac{1}{3}\) for the case with \(\lambda _{1}=\lambda _{2}=0,\lambda _{3}\ne 0\) and the case with \(\lambda _{2}=\lambda _{3}=0,\lambda _{1}\ne 0\).

(B) When \(\lambda _{1}\lambda _{3}\ne 0\) and \(\lambda _{2}=0\), A is reduced to

$$\begin{aligned} A=\frac{4}{3}(\lambda _{0}^{2}\lambda _{3}^{2}+\lambda _{1}^{2}\lambda _{4}^{2}). \end{aligned}$$

In light of constrained extreme theorem, we consider the following function

$$\begin{aligned} U=\frac{4}{3}(\lambda _{0}^{2}\lambda _{3}^{2}+\lambda _{1}^{2}\lambda _{4}^{2})+q(\lambda _{0}^{2}+\lambda _{1}^{2}+\lambda _{3}^{2}+\lambda _{4}^{2}-1). \end{aligned}$$

From \(\frac{\partial U}{\partial \lambda _{i}}=0\), obtain only one extreme \( \lambda _{0}=\lambda _{1}=\lambda _{3}=\lambda _{4}=\frac{1}{2}\), i.e., \( \frac{1}{2}(|000\rangle +|100\rangle +|110\rangle +|111\rangle )\), at which \( \max A=\frac{1}{6}\).

(C) When \(\lambda _{1}\lambda _{2}\ne 0\) and \(\lambda _{3}=0\), A is reduced to

$$\begin{aligned} A=\frac{4}{3}(\lambda _{0}^{2}\lambda _{2}^{2}+\lambda _{1}^{2}\lambda _{4}^{2}). \end{aligned}$$

The discussion is similar to (B), and there is only one extreme \(\lambda _{0}=\lambda _{1}=\lambda _{2}=\lambda _{4}=\frac{1}{2}\), i.e., \(\frac{1}{2} (|000\rangle +|100\rangle +|101\rangle +|111\rangle )\), \(\max A=\frac{1}{6}\).

(D) When \(\lambda _{1}=0\) and \(\lambda _{2}\lambda _{3}\ne 0\), then

$$\begin{aligned} A=\frac{4}{3}(\lambda _{0}^{2}\lambda _{3}^{2}+\lambda _{0}^{2}\lambda _{2}^{2}+\lambda _{2}^{2}\lambda _{3}^{2}). \end{aligned}$$

The constraint is

$$\begin{aligned} \lambda _{0}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}+\lambda _{4}^{2}=1, \end{aligned}$$

where \(\lambda _{4}\) is considered as a parameter. In light of constrained extreme theorem, for a fixed \(\lambda _{4}\), when \(\lambda _{0}=\lambda _{2}=\lambda _{3}\), i.e., \(\lambda _{0}|000\rangle +\lambda _{0}|101\rangle +\lambda _{0}|110\rangle +\lambda _{4}|111\rangle \), then \(\ A\) has the maximum \(A=4\lambda _{0}^{4}=\frac{4}{9}(1-\lambda _{4}^{2})^{2}<\frac{4}{9}\) .

(E) When \(\lambda _{1}\lambda _{2}\lambda _{3}\ne 0\), let

$$\begin{aligned} f=\frac{4}{3}(\lambda _{0}^{2}\lambda _{3}^{2}+\lambda _{0}^{2}\lambda _{2}^{2}+(\lambda _{1}\lambda _{4}+\lambda _{2}\lambda _{3})^{2}). \end{aligned}$$

Clearly, \(A\le f\). We next calculate the maximum value of f. The constraint reads \(\lambda _{0}^{2}+\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}+\lambda _{4}^{2}=1.\) In light of the constrained extreme theorem, we consider the function

$$\begin{aligned} F=f+g(\lambda _{0}^{2}+\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}+\lambda _{4}^{2}-1). \end{aligned}$$

From \(\frac{\partial F}{\partial \lambda _{i}}=0\), \(i=0,1,2,3,4,\) we obtain \( \lambda _{1}=\lambda _{2}=\lambda _{3}=\lambda _{4}\) and \(\lambda _{0}=0\). Thus, f has the maximum value \(\frac{1}{3}\). However, we require that \( \lambda _{0}\) do not vanish. From \(\sum _{i=0}^{4}\lambda _{i}^{2}=1\), we get \(\lambda _{0}^{2}+4\lambda _{4}^{2}=1\). Thus, when \(\lambda _{1}=\lambda _{2}=\lambda _{3}=\lambda _{4}\), \(A=\frac{4}{3}((2\lambda _{4}^{2}))(1-2\lambda _{4}^{2})<1/3.\) Clearly, \(\lim _{\lambda _{0}\rightarrow 0}A=\frac{1}{3}\). For example, when \(\lambda _{0}^{2}=\frac{1 }{100}\), then \(A=\frac{3333}{10\,000}\approx \frac{1}{3}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Cheng, M., Li, X. et al. A relation among tangle, 3-tangle, and von Neumann entropy of entanglement for three qubits. Quantum Inf Process 22, 14 (2023). https://doi.org/10.1007/s11128-022-03759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03759-4

Navigation