Skip to main content
Log in

An all-pair quantum SVM approach for big data multiclass classification

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we discuss a quantum approach for the all-pair multiclass classification problem. In an all-pair approach, there is one binary classification problem for each pair of classes, and so there are k(k − 1)/2 classifiers for a k-class classification problem. As compared to the classical multiclass support vector machine that can be implemented with polynomial run time complexity, our approach exhibits exponential speedup due to quantum computing. The quantum all-pair algorithm can also be used with other classification algorithms, and a speedup gain can be achieved as compared to their classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007)

    MATH  Google Scholar 

  4. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  5. Suykens, J.A.K., Vandewalle, J.: Multiclass least squares support vector machines. In: International Joint Conference on Neural Networks, 1999. IJCNN ‘99, vol. 2, pp. 900–903 (1999)

  6. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  7. Rebentrost, P., Mohseni, M., Lloyd, S.: arXiv:1307.0471v3

  8. Bishwas, A.K., Mani, A., Palade, V.: Conference Proceedings to IEEE 2nd International Conference on Contemporary Computing and Informatics (IC3I) (2016)

  9. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  10. https://peterwittek.com/understanding-quantum-svms.html

  11. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008). arXiv:0708.1879

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78, 052310 (2008). arXiv:0807.4994

  13. De Martini, F., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L., Sciarrino, F.: Experimental quantum private queries with linear optics. Phys. Rev. A 80, 010302(R) (2009). arXiv:0902.0222

  14. Chiorescu, I., Groll, N., Bertaina, S., Mori, T., Miyashita, S.: Magnetic strong coupling in a spin–photon system and transition to classical regime. Phys. Rev. B 82, 024413 (2010)

    Article  ADS  Google Scholar 

  15. Schuster, D.I., Sears, A.P., Ginossar, E., DiCarlo, L., Frunzio, L., Morton, J.J.L., Wu, H., Briggs, G.A.D., Buckley, B.B., Awschalom, D.D., Schoelkopf, R.J.: High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010)

    Article  ADS  Google Scholar 

  16. Kubo, Y., Ong, F.R., Bertet, P., Vion, D., Jacques, V., Zheng, D., Drau, A., Roch, J.-F., Auffeves, A., Jelezko, F., Wrachtrup, J., Barthe, M.F., Bergonzo, P., Esteve, D.: Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010)

    Article  ADS  Google Scholar 

  17. Wu, H., George, R.E., Wesenberg, J.H., Mlmer, K., Schuster, D.I., Schoelkopf, R.J., Itoh, K.M., Ardavan, A., Morton, J.J.L., Briggs, G.A.D.: Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)

    Article  ADS  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631 (2014)

    Article  Google Scholar 

  20. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359–371 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996)

  23. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1999)

  24. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Childs, A.: On the relationship between continuous-and discrete-time quantum walk. Commun. Math. Phys. 294, 581 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Tang, Y., Zhang, H.H.: Multiclass proximal support vector machines. J. Comput. Graph. Stat. 15(2), 339–355 (2006)

    Article  MathSciNet  Google Scholar 

  27. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IJCNN, Budapest, Hungary, July 25–29, vol. 2, pp. 985–990 (2004)

  28. Kara, A.: https://www.researchgate.net/publication/242491626_A_Quantum_Algorithm_For_Finding_An_e-Approximate_Mode (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arit Kumar Bishwas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishwas, A.K., Mani, A. & Palade, V. An all-pair quantum SVM approach for big data multiclass classification. Quantum Inf Process 17, 282 (2018). https://doi.org/10.1007/s11128-018-2046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2046-z

Keywords

Navigation