Skip to main content
Log in

Quantum computation with coherent spin states and the close Hadamard problem

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study a model of quantum computation based on the continuously parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. See, e.g., paragraph 6.1 in [23] for an introduction to information theoretic lower bounds.

References

  1. Benioff, P.: Quantum mechanical models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581–1585 (1982). doi:10.1103/PhysRevLett.48.1581

    Article  ADS  MathSciNet  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). doi:10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  3. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985). doi:10.1098/rspa.1985.0070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Adcock, M.R.A.: Continuous-Variable Quantum Computation of Oracle Decision Problems. Ph.D. thesis, University of Calgary, (2012). http://theses.ucalgary.ca/bitstream/11023/387/2/ucalgary_2012_adcock_mark

  5. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  6. Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A 425, 73–90 (1989). doi:10.1098/rspa.1989.0099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006). doi:10.1016/S0034-4877(06)80014-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, New York (1972)

    MATH  Google Scholar 

  9. Arrechi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972). doi:10.1103/PhysRevA.6.2211

    Article  ADS  Google Scholar 

  10. Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A Gen. Phys. 4, 313 (1971). doi:10.1088/0305-4470/4/3/009

    Article  ADS  MathSciNet  Google Scholar 

  11. Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993). doi:10.1103/PhysRevA.47.5138

    Article  ADS  Google Scholar 

  12. Adcock, M.R.A., Høyer, P., Sanders, B.C.: Limitations on continuous variable quantum algorithms with Fourier transforms. New J. Phys. 11, 103035 (2009). doi:10.1088/1367-2630/11/10/103035

    Article  ADS  Google Scholar 

  13. Adcock, M.R.A., Høyer, P., Sanders, B.C.: Gaussian quantum computation with oracle-decision problems. Quantum Inf. Process. 12, 1759–1779 (2012). doi:10.1007/s11128-012-0489-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, New York (1977)

    MATH  Google Scholar 

  15. Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton (2007)

    Book  MATH  Google Scholar 

  16. Bernstein, E., Vazirani, U.: Quantum Complexity Theory. In: Proceedings of the Twenty-fifth Annual Association for Computing Machinery Symposium on Theory of Computing, pp. 11–20. (1993). doi:10.1145/167088.167097

  17. Mosca, M.: Quantum Computer Algorithms, Ph.D. thesis, University of Oxford, (1999). http://www.iqc.ca/~mmosca/web/papers/moscathesis

  18. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992). doi:10.1098/rspa.1992.0167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Braunstein, S.L., Pati, A.K. (eds.): Quantum Information with Continuous Variables. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  20. Hall, M.: Semi-automorphisms of Hadamard matrices. Math. Proc. Camb. Philos. Soc 77, 459–473 (1975). doi:10.1017/S0305004100051288

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Michelson, A.M., Levesque, A.H.: Error Control Techniques for Digital Communication. Wiley, New York (1985)

    Google Scholar 

  22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Atallah, M.J.: Algorithms and Theory of Computation Handbook. CRC Press LLC, Boca Raton (1998)

    Book  MATH  Google Scholar 

  24. Jin, W. L.: Dynamical Analysis of Grover’s Search Algorithm in Arbitrarily High-Dimensional Search Spaces, (2015). http://vixra.org/abs/1506.0069

Download references

Acknowledgments

We appreciate financial support from the Alberta Ingenuity Fund (AIF), Alberta Innovates Technology Futures (AITF), Canada’s Natural Sciences and Engineering Research Council (NSERC), the Canadian Network Centres of Excellence for Mathematics of Information Technology and Complex Systems (MITACS), and the Canadian Institute for Advanced Research (CIFAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. A. Adcock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adcock, M.R.A., Høyer, P. & Sanders, B.C. Quantum computation with coherent spin states and the close Hadamard problem. Quantum Inf Process 15, 1361–1386 (2016). https://doi.org/10.1007/s11128-015-1229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1229-0

Keywords

Navigation