Skip to main content
Log in

Transfer of spatial reference frame using singlet states and classical communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A simple protocol is described for transferring spatial orientation from Alice to Bob (two spatially separated observers). The two observers are assumed to share quantum singlet states and classical communication. The protocol assumes that Alice and Bob have complete free will (measurement independence) and is based on maximizing the Shannon mutual information between Alice and Bob’s measurement outcomes. Repeated use of this protocol for each spatial axis of Alice allows transfer of a complete three-dimensional reference frame, up to inversion of each of the axes. The technological complexity of this protocol is similar to that needed for BB84 quantum key distribution and hence is much simpler to implement than recently proposed schemes for transmission of reference frames. A second protocol based on a Bayesian formalism is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sagnac, Georges: The demonstration of the luminiferous aether by an interferometer in uniform rotation. Comptes Rendus 157, 708–710 (1913)

    Google Scholar 

  2. Sagnac, Georges: On the proof of the reality of the luminiferous aether by the experiment with a rotating interferometer. Comptes Rendus 157, 1410–1413 (1913)

    Google Scholar 

  3. Sagnac, G.: Circulation of the ether in rotating interferometer. Le Journal de Physique et Le Radium, 5th Ser. 4, 177-195, (1914)

  4. Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967)

    Article  ADS  Google Scholar 

  5. Lefevre, H.: The fiber-optic gyroscope. Artech House, Boston (1993)

    Google Scholar 

  6. Titterton, D.H., Weston, J.: Strapdown Inertial Navigation Technology, 2nd edn.In: The Institution of Engineering and Technology and The American Institute of Aeronautics, London, UK and Reston, Virginia, USA (2004)

  7. Bertocchi, G., Alibart, O., Ostrowsky, D.B., Tanzilli, S., Baldi, P.: Single-photon Sagnac interferometer. J. Phys. B 39, 1011–1016 (2006)

    Article  ADS  Google Scholar 

  8. Gustavson, T.L., Landragin, A., Kasevich, M.A.: Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Grav. 17, 2385–2398 (2000)

    Article  ADS  MATH  Google Scholar 

  9. Gilowski, M., Schubert, C., Wendrich, T., Berg, P., Tackmann, G., Ertmer, W., Rasel E.M. : IEEE International Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time forum, pp. 1173–1175 (2009)

  10. Gupta, S., Murch, K.W., Moore, K.L., Purdy, T.P., Stamper-Kurn, D.M.: Bose-Einstein Condensation in a Circular Waveguide. Phys. Rev. Lett. 95, 143201–1–143201–4 (2005)

  11. Wang, Y.J., Anderson, D.Z., Bright, V.M., Cornell, E.A., Diot, Q., Kishimoto, T., Prentiss, M., Saravanan, R.A., Segal, S.R., Wu, S.: Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate. Phys. Rev. Lett. 94, 090405–1–090405–4 (2005)

  12. Tolstikhin, O.I., Morishita, T., Watanabe, S.: Gyroscopic effects in interference of matter waves. Phys. Rev. A 72, pp. 051603(R) to 051603-4 (2005)

  13. Kolkiran, A., Agarwal, G.S.: Heisenberg limited Sagnac interferometry. Opt. Exp. 15(11): 6798–6808; (2007)

  14. Cooper, J.J., Hallwood, D.W., Dunningham, J.A.: Entanglement-enhanced atomic gyroscope. Phys. Rev. A 81, pp. 43624–1 to 043624–8 (2010)

  15. Bahder, T.B.: Upper Bound on Fidelity of Classical Sagnac Gyroscope, pp. 1–5, Jan 25 (2011) quant-ph arXiv:1101.4634v1

  16. Massar, S.: Phys. Rev. A 62(040101):040101–1 to 040101–4 (2000). doi:10.1103/PhysRevA.62.040101

  17. Massar, S., Popescu, S.: Phys. Rev. Lett. 74: 1259–1263 (1995). doi:10.1103/PhysRevLett.74.1259

  18. Peres, A., Scudo, P.F.: Phys. Rev. Lett. 86: 4160–4162 (2001). doi:10.1103/PhysRevLett.86.4160

  19. Bagan, E., Baig, M., Munoz Tapia, R.: Phys. Rev. Lett. 87: 257903–1 to 257903–4 (2001). doi:10.1103/PhysRevLett.87.257903

  20. Chiribella, G., Chao, R., Yang, Y.: Superactivation of quantum gyroscopes. arXiv preprint arXiv:1411.3439, pp. 1–11 (2014)

  21. Peres, A., Scudo, P. F.: Unspeakable quantum information. In: Khrennikov, A. (ed.) Quantum Theory: Reconsideration of Foundations, Series Math. Modelling in Physics, Engineering and Cognitive Sciences, pp. 283–298. Växjö Univ. Press, Växjö (2002)

  22. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: “Reference frames, superselection rules, and quantum information”, Rev. Mod. Phys. 79, 555–609 (2007). doi:10.1103/RevModPhys.79.555

  23. Peres, A., Scudo, P.F.: Transmission of a Cartesian Frame by a Quantum System. Phys. Rev. Lett. 87, 167901–1 to 167901–4 (2001). doi:10.1103/PhysRevLett.87.167901

  24. Lindner, N.H., Peres, A., Terno, D.R.: Elliptic Rydberg states as direction indicators. Phys. Rev. A 68, pp. 042308–1 to 042308–11 (2003). doi:10.1103/PhysRevA.68.042308

  25. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  26. Chiribella, G., D’Ariano, G.M., Perinotti, P., Sacchi, M.F.: Efficient use of quantum resources for the transmission of a reference frame. Phys. Rev. Lett. 93, 180503–1 to 180503–4 (2004). doi:10.1103/PhysRevLett.93.180503

  27. Chiribella, G., Maccone, L., Perinotti, P.: Secret quantum communication of a reference frame. Phys. Rev. Lett. 98, 120501–1 to 120501–4 (2007). doi:10.1103/PhysRevLett.98.120501

  28. Kolenderski, P., Demkowicz-Dobrzanski, R.: Optimal state for keeping reference frames aligned and the platonic solids. Phys. Rev. A 78, 052333–1 to 052333–5 (2008). doi:10.1103/PhysRevA.78.052333

  29. Kofler, J., Paterek, T., Brukner, Ĉ.: Experimenter’s freedom in Bell’s theorem and quantum cryptography. Phys. Rev. A 73, 022104–1 to 022104–7 (2006). doi:10.1103/PhysRevA.73.022104

  30. Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 0404–1 to 250404–4 (2010). doi:10.1103/PhysRevLett.105.250404

  31. Hall, M.J.W.: Complementary contributions of indeterminism and signaling to quantum correlations. Phys. Rev. A 82, 62117–1 to 062117–5 (2010). doi:10.1103/PhysRevA.82.062117

  32. Banik, M., Gazil, M.R., Das, S., Rai, A., Kunkri, S.: Optimal free will on one side in reproducing the singlet correlation. J. Phys. A: Math. Theor. 45(205301), 1–6 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Thinh, L.P., Sheridan, L., Scarani, V.: Bell tests with min-entropy sources. Phys. Rev. A 87, 062121–10 (2013). doi:10.1103/PhysRevA.87.062121

  34. Pope, J.E., Kay, A.: Limited measurement dependence in multiple runs of a Bell test. Phys. Rev. A 88, 032110–1 to 032110–7 (2013). doi:10.1103/PhysRevA.88.032110

  35. Koh, D.E., Hall, M.J.W., Setiawan, Pope, J.E., Marletto, C., Kay, A., Scarani, V., Ekert, A.: Effects of Reduced Measurement independence on Bell-based randomness expansion. Phys. Rev. Lett. 109, 160404–1 to 160404–5 (2012). doi:10.1103/PhysRevLett.109.160404

  36. Bennett, C.H., Brassard, G.: In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–189 (1984)

  37. Bennett, C.H., Brassard, G.: Quantum public-key distribution system. IBM Tech. Discl. Bull. 28, 3153–3163 (1985)

    Google Scholar 

  38. Barnett, S.M.: Quantum Information. Oxford University Press Inc, New York (2009)

    MATH  Google Scholar 

  39. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  40. Gisin, N.: Quantum gloves: physics and information. arXiv:quant-ph/0408095, pp 1–3 (2004)

  41. Collins, D., Diósi, L., Gisin, N., Massar, S., Popescu, S.: Quantum gloves: quantum states that encode as much as possible chirality and nothing else. Phys. Rev. A 72, 022304–1 to 022304–9, (2005). doi:10.1103/PhysRevA.72.022304

  42. Abromowitz, M., Stegun, I.: Handbook of Mathematical Functions, 10th edn. Dover Publications Inc, New York (1972)

    Google Scholar 

Download references

Acknowledgments

I dedicate this paper, with fond memory, to my friend Dr. Howard Brandt. The author is grateful to Dr. Paul Ashley for suggesting this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Bahder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahder, T.B. Transfer of spatial reference frame using singlet states and classical communication. Quantum Inf Process 15, 1069–1080 (2016). https://doi.org/10.1007/s11128-015-1212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1212-9

Keywords

Navigation