Skip to main content

Advertisement

Log in

Feedback from soil inorganic nitrogen on soil organic matter mineralisation and growth in a boreal forest ecosystem

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Current nitrogen (N) deposition rates are considerably higher than during pre-industrial times and the growing interest in forest fertilisation requires better understanding of how the N and carbon (C) cycles interact. This study is based on experimental data showing how Scots pine (Pinus sylvestris L.) forests respond to single or consecutive pulse doses of N. The data were used to support the implementation of a dynamic feedback mechanism in the Q model, allowing for changes in soil N availability to regulate the rate of decomposer efficiency. Simulations of the long-term effects of slowly increasing N deposition with and without dynamic decomposer efficiency were then compared. Both versions of the model accurately predicted the response of tree growth to N fertilisation. Slowly increasing inputs of N over a century in the modified version acted on the inputs and outputs of soil C in opposing ways: (a) rate of litter input slowed down because more N was retained in the soil and thus not available for tree growth; (b) rate of C output, through soil heterotrophic respiration, was also gradually reduced due to increasing decomposer efficiency, although not enough to sufficiently balance the reduced litter input. Accurate prediction of the amount of added N retained in the ecosystem seems to be one of the key issues for estimating enhanced C sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KD, Steudler PA, Mellilo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber JD, Melillo JM, Nadelhoffer KJ, Pastor J, Boone RD (1997) Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems. Ecol Appl 1:303–315

    Article  Google Scholar 

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84:597–608

    Article  Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Ågren GI (1983) Nitrogen productivity of some conifers. Can J For Res 13:494–500

    Article  Google Scholar 

  • Ågren GI (1985) Theory for growth of plants derived from the nitrogen productivity concept. Physiol Plant 64:17–28

    Article  Google Scholar 

  • Ågren GI, Bosatta E (1988) Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54:185–197

    Article  PubMed  Google Scholar 

  • Ågren GI, Bosatta E, Magill AH (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98

    Article  Google Scholar 

  • Ågren GI, Hyvönen R, Nilsson T (2007) Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry 82:217–227

    Article  Google Scholar 

  • Ågren GI, Chertov O, Kellomäki S, Komarov A, van Oijen M (2008) Description of the models applied in the Modelling Approach. In: Kahle H-P, Karjalainen T, Schuck A, Ågren GI, Kellomäki S, Mellert K, Prietzel J, Rehfuess K-E, Spiecker H (eds) Causes and consequences of forest growth trends in Europe—results of the RECOGNITION project. Brill, Lieden, pp 49–65

    Google Scholar 

  • Alexander IJ, Fairley RI (1983) Effects of N fertilization on populations of fine roots and mycorrhizas in spruce humus. Plant Soil 71:49–53

    Article  CAS  Google Scholar 

  • Amponsah IG, Comeau PG, Brockley RP, Lieffers VJ (2005) Effects of repeated fertilization on needle longevity, foliar nutrition, effective leaf area index, and growth characteristics of lodgepole pine in interior British Columbia, Canada. Can J For Res 35:440

    Article  Google Scholar 

  • Andrén O, Paustian K (1987) Barley straw decomposition in the field: a comparison of models. Ecology 68:1190–1200

    Article  Google Scholar 

  • Ångström A, Högberg L (1952) On the content of nitrogen in atmospheric precipitation in Sweden II. Tellus 4:272–279

    Google Scholar 

  • Asman WAH, Drukker B, Janssen AJ (1988) Modeled historical concentrations and depositions of ammonia and ammonium in Europe. Atmos Environ 22:725–735

    Article  CAS  Google Scholar 

  • Bergh J (1997) Climatic and Nutritional Constraints to Productivity in Norway Spruce. In Department for Production Ecology. Swedish University of Agricultural Sciences, Uppsala.

  • Brix H (1983) Effects of thinning and nitrogen-fertilization on growth of douglas-fir—relative contribution of foliage quantity and efficiency. Can J For Res 13:167–175

    Article  Google Scholar 

  • Brockley RP (2005) Effects of post-thinning density and repeated fertilization on the growth and development of young lodgepole pine. Can J Forest Res 35:1952

    Article  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Nitrogen states in plant ecosystems: a viewpoint. Ann Bot 86:1095–8290

    Article  Google Scholar 

  • De Vries V, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Reinds GJ, Nabuurs GJ, Gundersen P, Sutton MA (2008) Ecologically implausible carbon response? Nature 451:E1–E3. doi:10.1038/nature06579

    Article  PubMed  Google Scholar 

  • Eriksson T, Rytter L, Vapaavour E (1996) Physiology of carbon allocation in trees. Biomass Bioenergy 11:115–127

    Article  Google Scholar 

  • Fagerström T, Lohm U (1977) Growth in scots pine (Pinus Silvestris L.) mechanism of response to nitrogen. Oecologia 26:305–315

    Article  Google Scholar 

  • Flower-Ellis JGK, Brown CG, Woodger GH (1994) Vertical life-tables for Scots pine and Norway spruce needles form the forest limit in Swedish Lapland. Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Bilological Rev 63:433–462

    Article  Google Scholar 

  • Franklin O, Högberg P, Ekblad A, Ågren GI (2003) Pine forest floor carbon accumulation in response to N and PK additions: bomb C-14 modelling and respiration studies. Ecosystems 6:644–658

    Article  CAS  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    PubMed  Google Scholar 

  • Hägglund B (1981) Samband mellan ståndortsindex H100 och bonitet för tall och gran i Sverige. Umeå.

  • Hägglund B, Lundmark J-E (1977) Site index estimation by means of site properties—Scots pine and Norway spruce in Sweden. In Studia Forestalia Suecia. Swedish College of Forestry, Stockholm, pp 463–480

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656

    Article  CAS  Google Scholar 

  • Högberg P (2007) Nitrogen impacts on forest carbon. Nature 447:781–782

    Article  PubMed  Google Scholar 

  • House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus Ser B 55:345–363

    Article  Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  Google Scholar 

  • Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89:121–137

    Article  Google Scholar 

  • Kahle H-P, Karjalainen T, Schuck A, Ågren GI, Kellomäki S, Mellert K, Prietzel J, Rehfuess K-E, Eds SH (2008) Causes and consequences of forest growth trends in Europe—results of the RECOGNITION project. Brill, Lieden, p 261

    Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  PubMed  Google Scholar 

  • Ladanai S, Ågren GI (2004) Temperature sensitivity of nitrogen productivity for Scots pine and Norway spruce. Trees 18:312–319

    CAS  Google Scholar 

  • Ladanai S, Ågren GI, Hyvönen R, Lundkvist H (2007) Nitrogen budgets for Scots pine and Norway spruce ecosystems 12 and 7 years after the end of long-term fertilisation. For Ecol Manage 238:130–140

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  PubMed  Google Scholar 

  • Manzoni S, Porporato A (2007) Theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles. Soil Biol Biochem 39:1542–1556

    Article  CAS  Google Scholar 

  • Matthews E (1994) Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Glob Biogeochem Cycles 8:411–439

    Article  CAS  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C: N: P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003) Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 136:220–235

    Article  CAS  PubMed  Google Scholar 

  • Pettersson F, Högbom L (2004) Long-term growth effects following forest nitrogen fertilization in Pinus sylvestris and Picea abies stands in Sweden. Scand J For Res 19:339–347

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Science 298:156–159

    CAS  Google Scholar 

  • Rolff C, Ågren GI (1999) Predicting effects of different harvesting intensities with a model of nitrogen limited forest growth. Ecol Modell 118:193–211

    Article  CAS  Google Scholar 

  • Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59:48–462

    CAS  PubMed  Google Scholar 

  • Ryan MG, Hunt ER Jr, McMurtrie RE, Ågren GI, Aber JD, Friend AD, Rastetter EB, Pulliam WM, Raison JR, Linder S (1996) Comparing models of ecosystem function for temperate Conifer Forests. I. Model description and validation. In: Bredenmeyer D, Hall DO, Mellilo JM, Ågren GI (eds.) Global change: effects on coniferous forests and grasslands. John Whiley & Sons Ltd.

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Schimel DS, Enting IG, Heimann M, Wigley TML, Raynard D, Alves D, Siegenthaler U (1995) CO2 and the carbon cycle. In: Houghton JT, Filho LGM, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) Climate change 1994: radiative forcing of climate change. Cambridge University Press, Cambridge, pp 39–71

    Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry, Academic Press.

  • Smil V (1999) Detonator of the population explosion. Nature 400:415–415

    Article  CAS  Google Scholar 

  • Sutton MA, Simpson D, Levy PE, Smith RI, Reis S, van Oijen M, de Vries W (2008) Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob Change Biol 14:2057–2063

    Article  Google Scholar 

  • Tamm CO (1964) Determination of nutrient requirements of forest stands. Int Rev For Res 1:115–170

    Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Questions of productivity, vegetational changes, and ecosystem stability. Springer Verlag, Berlin, p 115

    Google Scholar 

  • Tamm CO, Aronsson A, Popovic B (1995) Nitrogen saturation in a long-term forest experiment with annual additions of nitrogen. Water Air Soil Pollut 85:1683–1688

    Article  CAS  Google Scholar 

  • Townsend AR, Braswell BH, Holland EA, Penner JE (1996) Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol Appl 6:806–814

    Article  Google Scholar 

  • Vitousek M, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

Download references

Acknowledgements

We thank Folke Petterson at the Forestry Research Institute of Sweden (Skogforsk) for kindly making experimental data available. We also thank the anonymous reviewers and David Pepper for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Eliasson.

Additional information

Responsible Editor: Keith Paustian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliasson, P.E., Ågren, G.I. Feedback from soil inorganic nitrogen on soil organic matter mineralisation and growth in a boreal forest ecosystem. Plant Soil 338, 193–203 (2011). https://doi.org/10.1007/s11104-010-0478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0478-z

Keywords

Navigation