Skip to main content

Advertisement

Log in

Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae)

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Ocimum, commonly known as Tulsi, is a huge genus within family Lamiaceae, comprising about 64 species of annual to perennial aromatic medicinal herbs with a long history of traditional uses. The aromatic plants of the genus Ocimum have long been used as flavouring agents, as well as diverse medicinal applications. Our comprehensive review covers the published literature through the period from 1961 to April 2019 and provides a complete survey of nearly all the studied species up to date. Additionally, all related taxonomic data, geographical distribution as well as different traditional uses are discussed here in details. The major chemical classes within the genus Ocimum include flavonoids, phenolic acids and terpenes. The bioactivities of various extracts or individual compounds, both in vitro and in vivo, include antimicrobial, cytotoxic, antinociceptive, anti-inflammatory, antihyperglycemic and antioxidant. This comprehensive review will serve as a database for future research and drug development from the genus Ocimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis (2-amidinopropane) dihydrochloride

APCI-MS:

Atmospheric pressure chemical ionization mass spectrometry

BW:

Body weight

13C-NMR:

Carbon nuclear magnetic resonance

CC:

Column chromatography

CC50 :

Half cytotoxic concentration

DMBA:

7,12-Dimethylbenzo anthracene

DPPH:

2,2-Diphenyl-1-picryl-hydrazyl-hydrate

DW:

Dry weight

ED50 :

Half effective dose

EGFR:

Epidermal growth factor receptor

FW:

Fresh weight

Gal:

Galactose

GC/MS:

Gas chromatography/mass spectrometry

Glc:

Glucose

GlcA:

Glucouronic acid

1H:

Proton nuclear magnetic resonance

HIV:

Human immunodeficiency virus

HPTLC:

High performance thin layer chromatography

IC50 :

50% Inhibitory concentration

IC90 :

90% Inhibitory concentration

LC50 :

50% Lethal concentration

ICAP-AES:

Inductively coupled argon plasma atomic spectroscopy

Ip.:

Intraperitoneal

LD50 :

50% Lethal dose

LDL:

Low density lipoproteins

LIBS:

Laser induced breakdown spectroscopy

LMI%:

Percentage leucocyte migration inhibition

Me:

Methyl

MES:

Maximal electric shock

MI:

Maximal inhibition

MIC:

Minimum inhibitory concentration

µM:

Micromolar

NF-KB:

Nuclear factor Kappa B

OMe:

Methoxy

OSCC:

Oral squamous cell carcinoma

Pg:

Pico gram

PGE2:

Prostaglandin E2

PhAs:

Phenolic acids

RAP:

Randomly amplified polymorphic DNA

Rha:

Rhamnose

SAR:

Structure activity relationship

UPLC–ESI–MS/MS:

Ultra performance liquid chromatography

VLDL:

Very low density lipoproteins

ZOI:

Zone of inhibition

Xyl:

Xylose

References

  • Adam A, Crespy V, Levrat-Verny M-A, Leenhardt F, Leuillet M, Demigné C, Rémésy C (2002) The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J Nutr 132:1962–1968

    PubMed  CAS  Google Scholar 

  • Aguiyi J, Obi C, Gang S, Igweh A (2000) Hypoglycaemic activity of Ocimum gratissimum in rats. Fitoterapia 71:444–446

    PubMed  CAS  Google Scholar 

  • Al-Hajj NQM, Rashid H, Wang H, Thabit R, Rashed M (2014) Antioxidant, antimicrobial and Pulicaria inuloides and Ocimum froskolei: a review. Am Res Thoughts 1:973–1000

    Google Scholar 

  • Ali A, Ali M (2012) New fatty acid derivatives from Ocimum sanctum L. leaves. Indian Drugs 49:13–18

    Google Scholar 

  • Ali NAA, Chhetri BK, Dosoky NS, Shari K, Al-Fahad AJ, Wessjohann L, Setzer WN (2017) Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines 4(17):1–14

    CAS  Google Scholar 

  • Alves MJ, Ferreira IC, Froufe HJ, Abreu R, Martins A, Pintado M (2013) Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J Appl Microbiol 115:346–357

    PubMed  CAS  Google Scholar 

  • Al-Zahrani SH (2012) Antibacterial activities of gallic acid and gallic acid methyl ester on methicillin-resistant Staphylococcus aureus. J Am Sci 8:7–12

    Google Scholar 

  • Anjaneyalu YV, Gowda DC (1979) Structural studies of an acidic polysaccharide from Ocimum basilicum seeds. Carbohydr Res 75:251–256

    CAS  Google Scholar 

  • Anjaneyalu Y, Tharanathan R (1971) Composition and preliminary fractionation of the seed mucilage of Ocimum canum. Aust J Chem 24:1501–1507

    CAS  Google Scholar 

  • Anjaneyalu YV, Khan M-R, Tharanathan RN (1983) An acidic xylan from the capsular polysaccharide-complex of Ocimum gratissimum seeds. Carbohydr Res 116:83–88

    CAS  Google Scholar 

  • Bang S, Ha TKQ, Lee C, Li W, Oh W-K, Shim SH (2016) Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br J Ethnopharmacol 192:398–405

    PubMed  CAS  Google Scholar 

  • Baruah TJ, Sharan R, Kma L (2018) Vicenin-2: a potential radiosensitizer of non-small cell lung cancer cells. Mol Biol Rep 45:1219–1225

    PubMed  CAS  Google Scholar 

  • Bayala B, Bassole IHN, Gnoula C, Nebie R, Yonli A, Morel L, Figueredo G, Nikiema J-B, Lobaccaro J-MA, Simpore J (2014) Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS One 9(3):1–12

    Google Scholar 

  • Berim A, Gang DR (2013) The roles of a flavone-6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 288:1795–1805

    PubMed  CAS  Google Scholar 

  • Berim A, Hyatt DC, Gang DR (2012) A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil. Plant Physiol 160:1052–1069

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhasin M (2012) Ocimum—taxonomy, medicinal potentialities and economic value of essential oil. J Biosph 1:48–50

    Google Scholar 

  • Bhattacharya A, Aggarwal A, Sharma N, Cheema J (2014) Evaluation of some anti-oxidative constituents of three species of Ocimum. Int J Life Sci 8:14–17

    Google Scholar 

  • Bilal A, Jahan N, Ahmed A, Bilal SN, Habib S, Hajra S (2012) Phytochemical and pharmacological studies on Ocimum basilicum Linn—a review. Int J Curr Res Rev 4(23):73–83

    CAS  Google Scholar 

  • Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308

    CAS  Google Scholar 

  • Bouzaiene NN, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144:80–85

    Google Scholar 

  • Brahmachari G (2010) Nevadensin: isolation, chemistry and bioactivity. Int J Green Pharm 4:213–219

    Google Scholar 

  • Brožič P, Kocbek P, Sova M, Kristl J, Martens S, Adamski J, Gobec S, Rižner TL (2009) Flavonoids and cinnamic acid derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 301:229–234

    PubMed  Google Scholar 

  • Carović-Stanko K, Orlić S, Politeo O, Strikić F, Kolak I, Milos M, Satovic Z (2010) Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem 119:196–201

    Google Scholar 

  • Cavalcanti ESB, Morais SMd, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544

    PubMed  CAS  Google Scholar 

  • Chagonda LS, Makanda CD, Chalchat JC (2000) The essential oils of Ocimum canum Sims (basilic camphor) and Ocimum urticifolia Roth from Zimbabwe. Flavour Fragr J 15:23–26

    CAS  Google Scholar 

  • Chandrasekaran C, Srikanth H, Anand M, Allan JJ, Viji MH, Amit A (2013) Evaluation of the mutagenic potential and acute oral toxicity of standardized extract of Ocimum sanctum (OciBest™). Hum Exp Toxicol 32:992–1004

    PubMed  CAS  Google Scholar 

  • Charles DJ, Simon JE, Wood KV (1990) Essential oil constituents of Ocimum micranthum Willd. J Agric Food Chem 38:120–122

    CAS  Google Scholar 

  • Chen P-N, Chu S-C, Chiou H-L, Chiang C-L, Yang S-F, Hsieh Y-S (2005) Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer 53:232–243

    PubMed  CAS  Google Scholar 

  • Chil Núñez I, Escalona Arranz J, Berenguer Rivas C, Mendonça P, Mateo Pérez K, Dutok Sánchez C, Cortinhas L, Silva C, Carvalho M, Queiroz M (2017) Chemical composition and toxicity of Ocimum sanctum L. var. cubensis essential oil up-growing in the eastern of Cuba. Int J Pharmacogn Phytochem Res 9:1021–1028

    Google Scholar 

  • Cholewski M, Tomczykowa M, Tomczyk M (2018) A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients 10:1662

    PubMed Central  Google Scholar 

  • Chopra RN, Nayar SL (1956) Glossary of Indian medicinal plants. Council of Scientific And Industrial Research, New Delhi

    Google Scholar 

  • Chopra R, Chopra I, Handa K, Kapoor L (1958) Jatropha curcas (Euphorbiaceae). Chopra’s indigenous drugs of India, 2nd edn. UN Dhar and Sons, Calcutta, pp 587–676

    Google Scholar 

  • Chowdhury T, Mandal A, Roy SC, De Sarker D (2017) Diversity of the genus Ocimum (Lamiaceae) through morpho-molecular (RAPD) and chemical (GC–MS) analysis. J Gen Eng Biotechnol 15:275–286

    Google Scholar 

  • Chu C-Y, Tsai Y-Y, Wang C-J, Lin W-L, Tseng T-H (2001) Induction of apoptosis by esculetin in human leukemia cells. Eur J Pharmacol 416:25–32

    PubMed  CAS  Google Scholar 

  • CSIR DK (1948) The wealth of India. Council of Scientific and Industrial Research, New Delhi

    Google Scholar 

  • Da Silva RZ, Yunes RA, de Souza MM, Monache FD, Cechinel-Filho V (2010) Antinociceptive properties of conocarpan and orientin obtained from Piper solmsianum C. DC. var. solmsianum (Piperaceae). J Nat Med 64:402–408

    PubMed  Google Scholar 

  • Das S, Chandra A, Agarwal S, Singh N (1983) Ocimum sanctum (Tulsi) in the treatment of viral encephalitis (A preliminary clinical trial). Antiseptic 80:323–327

    Google Scholar 

  • de Almeida I, Alviano DS, Vieira DP, Alves PB, Blank AF, Lopes AHC, Alviano CS, Maria do Socorro SR (2007) Antigiardial activity of Ocimum basilicum essential oil. Parasitol Res 101:443–452

    PubMed  Google Scholar 

  • de Lira Mota KS, Dias GEN, Pinto MEF, Luiz-Ferreira Â, Monteiro Souza-Brito AR, Hiruma-Lima CA, Barbosa-Filho JM, Batista LM (2009) Flavonoids with gastroprotective activity. Molecules 14:979–1012

    PubMed Central  Google Scholar 

  • de Paula JP, Gomes-Carneiro MR, Paumgartten FJ (2003) Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J Ethnopharmacol 88:253–260

    Google Scholar 

  • Dekker T, Ignell R, Ghebru M, Glinwood R, Hopkins R (2011) Identification of mosquito repellent odours from Ocimum forskolei. Parasite Vectors 4(183):1–7

    Google Scholar 

  • Devi PU, Ganasoundari A, Rao B, Srinivasan K (1999) In vivo radioprotection by Ocimum flavonoids: survival of mice. Rad Res 151:74–78

    CAS  Google Scholar 

  • Djilani A, Dicko A (2012) The therapeutic benefits of essential oils, nutrition, wellbeing and health. In: Bouayed J (ed) InTech, pp 158–177. ISBN 978-953-51-0125-3

  • Ebeye O, Ekundina O, Wilkie I (2014) Histological and biochemical effects of aqueous extract of Ocimum gratissimum on the liver and kidney of adult wistar rats. Afr J Cell Pathol 2:59–64

    Google Scholar 

  • Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46:508–520

    PubMed  CAS  Google Scholar 

  • Farjam MH, Rustaiyan A, Ezzatzadeh E, Jassbi AR (2013) Labdane-type diterpene and two flavones from Salvia sharifii Rech. f. and Esfan. and their biological activities. Iran J Pharm Res 12(2):395–411

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fatope MO, Marwah RG, Al Hadhrami NM, Onifade AK, Williams JR (2008) Identification of the chemotypes of Ocimum forskolei and Ocimum basilicum by NMR spectroscopy. Chem Biodivers 5:2457–2463

    PubMed  CAS  Google Scholar 

  • Filip S (2017) Basil (Ocimum basilicum L.) a source of valuable phytonutrients. Int J Clin Nutr Diet 3(118):1–5

    Google Scholar 

  • Flegkas A, Milosević Ifantis T, Barda C, Samara P, Tsitsilonis O, Skaltsa H (2019) Antiproliferative activity of (–)-rabdosiin isolated from Ocimum sanctum L. Medicines 6(37):1–10

    Google Scholar 

  • Freire CMM, Marques MOM, Costa M (2006) Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. J Ethnopharmacol 105:161–166

    PubMed  CAS  Google Scholar 

  • Fu X, Li S, Wang M (2006) Vasorelaxant action of orientin on isolated rabbit thoracic aortic rings and its mechanism. J China Pharm Univ 37(6):539–543

    CAS  Google Scholar 

  • Fu JT, Tang L, Li WS, Wang K, Cheng DM, Zhang ZX (2015) Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora siebold against solenopsis invicta workers (Hymenoptera: Formicidae). J Ins Sci (Online) 15:129

    CAS  Google Scholar 

  • Gabay O, Sanchez C, Salvat C, Chevy F, Breton M, Nourissat G, Wolf C, Jacques C, Berenbaum F (2010) Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthr Cartil 18:106–116

    PubMed  CAS  Google Scholar 

  • Gautam MK, Goel RK (2014) Toxicological study of Ocimum sanctum Linn leaves: hematological, biochemical, and histopathological studies. J Toxicol 2014:1–9

    Google Scholar 

  • Godhwani S, Godhwani J, Was D (1988) Ocimum sanctum—a preliminary study evaluating its immunoregulatory profile in albino rats. J Ethnopharmacol 24:193–198

    PubMed  CAS  Google Scholar 

  • Granger RE, Campbell EL, Johnston GA (2005) (+)-And (−)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochem Pharmacol 69:1101–1111

    PubMed  CAS  Google Scholar 

  • Grayer RJ, Kite GC, Goldstone FJ, Bryan SE, Paton A, Putievsky E (1996) Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry 43:1033–1039

    PubMed  CAS  Google Scholar 

  • Grayer RJ, Veitch NC, Kite GC, Price AM, Kokubun T (2001) Distribution of 8-oxygenated leaf-surface flavones in the genus Ocimum. Phytochem 56:559–567

    CAS  Google Scholar 

  • Grayer RJ, Kite GC, Veitch NC, Eckert MR, Marin PD, Senanayake P, Paton AJ (2002) Leaf flavonoid glycosides as chemosystematic characters in Ocimum. Biochem Syst Ecol 30:327–342

    CAS  Google Scholar 

  • Gupta P, Yadav DK, Siripurapu KB, Palit G, Maurya R (2007) Constituents of Ocimum sanctum with antistress activity. J Nat Prod 70:1410–1416

    PubMed  CAS  Google Scholar 

  • Gupta R, Sharma AK, Dobhal M, Sharma M, Gupta R (2011) Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 3:29–37

    PubMed  CAS  Google Scholar 

  • Hameed H, Aydin S, Başaran AA, Başaran N (2016) Assessment of cytotoxic properties of sinapic acid in vitro. Turk J Pharm Sci 13:225–232

    CAS  Google Scholar 

  • He M, Min J-W, Kong W-L, He X, Li J-X, Peng B-W (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85

    PubMed  CAS  Google Scholar 

  • Hiltunen R, Holm Y (2003) Basil: the genus Ocimum. CRC Press, Amsterdam, pp 1–146

    Google Scholar 

  • Hollman PC (2004) Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 42:74–83

    CAS  Google Scholar 

  • Huang CB, George B, Ebersole JL (2010) Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol 55:555–560

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain AI, Anwar F, Sherazi STH, Przybylski R (2008) Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 108:986–995

    PubMed  CAS  Google Scholar 

  • Idris S, Iyaka Y, Ndamitso M, Paiko Y (2011) Nutritional composition of the leaves and stems of Ocimum gratissimum. J Emerg Trends Eng Appl Sci 2:801–805

    CAS  Google Scholar 

  • Ilori M, Sheteolu A, Omonigbehin E, Adeneye A (1996) Antidiarrhoeal activities of Ocimum gratissimum (Lamiaceae). J Diarrhoeal Dis Res 14:283–285

    PubMed  CAS  Google Scholar 

  • Inbaneson SJ, Sundaram R, Suganthi P (2012) In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pac J Trop Med 5:103–106

    PubMed  Google Scholar 

  • Jamshidi N, Cohen MM (2017) The clinical efficacy and safety of Tulsi in humans: a systematic review of the literature. Evid Based Complement Alternat Med 2017:1–13

    Google Scholar 

  • Javanmardi J, Khalighi A, Kashi A, Bais H, Vivanco J (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

    PubMed  CAS  Google Scholar 

  • Jembere B, Obeng-Ofori D, Hassanali A, Nyamasyo G (1995) Products derived from the leaves of Ocimum kilimandscharicum (Labiatae) as post-harvest grain protectants against the infestation of three major stored product insect pests. Bull Entomol Res 85:361–367

    Google Scholar 

  • Jia C, Zhang J, Yu L, Wang C, Yang Y, Rong X, Xu K, Chu M (2018) Antifungal activity of coumarin against Candida albicans is related to apoptosis. Front Cell Infect Microbiol 8:1–13

    Google Scholar 

  • Joseph B, Nair VM (2013) Ocimum sanctum Linn. (Holy basil): pharmacology behind its anti-cancerous effect. Int J Pharm Biol Sci 4:556–575

    Google Scholar 

  • Joshi R (2013) Chemical composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. sanctum and their major constituents. Ind J Pharm Sci 75(4):457–477

    CAS  Google Scholar 

  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karawya MS, Hashim FM, Hifnawy MS (1974) Oils of Ocimum basilicum and Ocimum rubrum grown in Egypt. J Agric Food Chem 22:520–522

    CAS  Google Scholar 

  • Kelm M, Nair M, Strasburg G, DeWitt D (2000) Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 7:7–13

    PubMed  CAS  Google Scholar 

  • Khosla M, Bhasin M (2000) Biosynthetic correlations of major essential oil components in Ocimum carnosum LK & Otto. Ind Perfum 44:55–60

    Google Scholar 

  • Kochhar A, Sharma N, Sachdeva R (2009) Effect of supplementation of Tulsi (Ocimum sanctum) and Neem (Azadirachta indica) leaf powder on diabetic symptoms, anthropometric parameters and blood pressure of non insulin dependent male diabetics. Stud Ethno-Med 3:5–9

    Google Scholar 

  • Kohlert C, Van Rensen I, März R, Schindler G, Graefe E, Veit M (2000) Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans. Planta Med 66:495–505

    PubMed  CAS  Google Scholar 

  • Konishi Y, Hitomi Y, Yoshida M, Yoshioka E (2005) Pharmacokinetic study of caffeic and rosmarinic acids in rats after oral administration. J Agric Food Chem 53:4740–4746

    PubMed  CAS  Google Scholar 

  • Koriem KM, Soliman RE (2014) Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. J Toxicol 2014:1–10

    Google Scholar 

  • Kotan R, Kordali S, Cakir A (2007) Screening of antibacterial activities of twenty-one oxygenated monoterpenes. J Biosci 62:507–513

    CAS  Google Scholar 

  • Kothari S, Bhattacharya A, Ramesh S (2004) Essential oil yield and quality of methyl eugenol rich Ocimum tenuiflorum Lf (syn. O. sanctum L.) grown in south India as influenced by method of harvest. J Chromatogr A 1054:67–72

    PubMed  CAS  Google Scholar 

  • Kulkarni KV, Adavirao BV (2018) A review on: Indian traditional shrub Tulsi (Ocimum sanctum): the unique medicinal plant. J Med Plants 6:106–110

    Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656

    CAS  Google Scholar 

  • Lee TH, Hoover RL, Williams JD, Sperling RI, Ravalese J III, Spur BW, Robinson DR, Corey E, Lewis RA, Austen KF (1985) Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 312:1217–1224

    PubMed  CAS  Google Scholar 

  • Lee B-C, Lee SY, Lee HJ, Sim G-S, Kim J-H, Kim J-H, Cho Y-H, Lee D-H, Pyo H-B, Choe T-B (2007) Anti-oxidative and photo-protective effects of coumarins isolated from Fraxinus chinensis. Arch Pharm Res 30:1293

    PubMed  CAS  Google Scholar 

  • Lu M, Kong Q, Xu X, Lu H, Lu Z, Yu W, Zuo B, Su J, Guo R (2014) Pectolinarigenin—a flavonoid compound from Cirsium japonicum with potential anti-proliferation activity in mcf-7 breast cancer cell. Trop J Pharm Res 13:225–228

    CAS  Google Scholar 

  • Luo J, Hu Y-L, Wang H (2017) Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp Therap Med 14:3623–3631

    CAS  Google Scholar 

  • Ma C-M, Cai S-Q, Cui J-R, Wang R-Q, Tu P-F, Hattori M, Daneshtalab M (2005) The cytotoxic activity of ursolic acid derivatives. Eur J Med Chem 40:582–589

    PubMed  CAS  Google Scholar 

  • Machado MIL, de Vasconcelos Silva MG, Matos FJA, Craveiro AA, Alencar JW (1999) Volatile constituents from leaves and inflorescence oil of Ocimum tenuiflorum L. f. (syn. O. sanctum L.) grown in Northeastern Brazil. J Ess Oil Res 11:324–326

    CAS  Google Scholar 

  • Mahajan N, Rawal S, Verma M, Poddar M, Alok S (2013) A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomed Prev Nutr 3:185–192

    Google Scholar 

  • Manosroi J, Dhumtanom P, Manosroi A (2006) Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett 235:114–120

    PubMed  CAS  Google Scholar 

  • Martins AP, Salgueiro LR, Vila R, Tomi F, Cañigueral S, Casanova J, da Cunha AP, Adzet T (1999) Composition of the essential oils of Ocimum canum, O. gratissimum and O. minimum. Planta Med 65:187–189

    PubMed  CAS  Google Scholar 

  • Marwat SK, Khan MS, Ghulam S, Anwar N, Mustafa G, Usman K (2011) Phytochemical constituents and pharmacological activities of sweet Basil-Ocimum basilicum L. (Lamiaceae). Asian J Chem 23(9):3773–3782

    CAS  Google Scholar 

  • Marzouk AM (2009) Hepatoprotective triterpenes from hairy root cultures of Ocimum basilicum L. Z Für Nat C 64:201–209

    CAS  Google Scholar 

  • Mathews S, Singhal R, Kulkarni P (1993) Ocimum basilicum: a new non-conventional source of fibre. Food Chem 47:399–401

    CAS  Google Scholar 

  • Mediratta P, Sharma K, Singh S (2002) Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol 80:15–20

    PubMed  CAS  Google Scholar 

  • Mondal S, Mirdha BR, Mahapatra SC (2009) The science behind sacredness of tulsi (Ocimum sanctum Linn.). Ind J Physiol Pharmacol 53:291–306

    CAS  Google Scholar 

  • Moumbock AF, Simoben CV, Wessjohann L, Sippl W, Günther S, Ntie-Kang F (2017) Computational studies and biosynthesis of natural products with promising anticancer properties. Phytoch–Nat Prod Cancer. InTech, Rijeka, pp 257–285

  • Mousavi L, Salleh RM, Murugaiyah V (2018) Phytochemical and bioactive compounds identification of Ocimum tenuiflorum leaves of methanol extract and its fraction with an anti-diabetic potential. Int J Food Prop 21:2390–2399

    CAS  Google Scholar 

  • Muthu C, Ayyanar M, Raja N, Ignacimuthu S (2006) Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J Ethnobiol Ethnomed 2(43):1–10

    Google Scholar 

  • Nagaprashantha LD, Vatsyayan R, Singhal J, Fast S, Roby R, Awasthi S, Singhal SS (2011) Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem Pharmacol 82:1100–1109

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura CV, Ueda-Nakamura T, Bando E, Melo AFN, Cortez DAG, Dias Filho BP (1999) Antibacterial activity of Ocimum gratissimum L. essential oil. Mem Inst Oswaldo Cruz 94:675–678

    PubMed  CAS  Google Scholar 

  • Narwal S, Rana A, Tiwari V, Gangwani S, Sharma R (2011) Review on chemical constituents and pharmacological action of Ocimum kilimandscharicum. Indo Glob J Pharm Sci 1:287–293

    Google Scholar 

  • Naveen P, Lingaraju H, Anitha K (2017) Simultaneous determination of rutin, isoquercetin, and quercetin flavonoids in Nelumbo nucifera by high-performance liquid chromatography method. Int J Pharm Invest 7(2):94–104

    CAS  Google Scholar 

  • Nazar S, Ravikumar S, Prakash Williams G (2008) Ethnopharmacological survey of medicinal plants along the southwest coast of India. J Herb Spice Med Plants 14:219–239

    Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    PubMed  PubMed Central  CAS  Google Scholar 

  • Njan AA, Olaoye SO, Afolabi SO, Ejimkonye BC, Soje A, Olorundare OE, Iwalewa EO (2019) Safety effect of fractions from methanolic leaf extract of Ocimum gratissimum on reproduction in male wistar rats. Toxicol Rep 6:496–504

    PubMed  PubMed Central  CAS  Google Scholar 

  • Njinga N, Sule M, Pateh U, Hassan H, Abdullahi S, Ache R (2016) Isolation and antimicrobial activity of [beta]-sitosterol-3-O-glucoside from Lannea kerstingii Engl. & K. Krause (Anacardiacea). Nitte Univ J Health Sci 6(1):4–8

    Google Scholar 

  • Njoku C, Zeng L, Asuzu I, Oberlies NH, McLaughlin JL (1997) Oleanolic acid, a bioactive component of the leaves of Ocimum gratissimum (Lamiaceae). Int J Pharmacogn 35:134–137

    CAS  Google Scholar 

  • Nour AH, Elhussein SA, Osman NA, Nour AH (2009) Characterization and chemical composition of the fixed oil of fourteen basil (Ocimum basilicum L.) accessions grown in Sudan. Int J Chem Technol 1:52–58

    CAS  Google Scholar 

  • Ntezurubanza L, Scheffer J, Looman A, Svendsen AB (1984) Composition of essential oil of Ocimum kilimandscharicum grown in Rwanda. Planta Med 50:385–388

    PubMed  CAS  Google Scholar 

  • Ogbe RJ, Ochalefu DO, Mafulul SG, Olaniru OB (2015) A review on dietary phytosterols: their occurrence, metabolism and health benefits. Asian J Plant Sci Res 5:10–21

    CAS  Google Scholar 

  • O’Leary N (2016) Taxonomic revision of Ocimum (Lamiaceae) in Argentina. J Torrey Bot Soc 144:74–88

    Google Scholar 

  • Onaolapo A, Onaolapo O (2012) Ocimum gratissimum Linn causes dose dependent hepatotoxicity in streptozotocin-induced diabetic Wistar rats. Maced J Med Sci 5:17–25

    Google Scholar 

  • Panat NA, Amrute BK, Bhattu S, Haram SK, Sharma GK, Ghaskadbi SS (2015) Antioxidant profiling of C3 quercetin glycosides: quercitrin, quercetin 3-β-d-glucoside and quercetin 3-O-(6″-O-malonyl)-β-d-glucoside in cell free environment. Free Radic Antioxid 5:90–100

    CAS  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5(e47):1–15

    Google Scholar 

  • Paton A (1992) A synopsis of Ocimum L. (Labiatae) in Africa. Kew Bull 47:403–435

    Google Scholar 

  • Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacogn Rev 4(7):95–105

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pesewu GA, Cutler RR, Humber DP (2008) Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. J Ethnopharmacol 116:102–111

    PubMed  Google Scholar 

  • Pessoa L, Morais S, Bevilaqua C, Luciano J (2002) Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Vetr Parasitol 109:59–63

    CAS  Google Scholar 

  • Phippen WB, Simon JE (1998) Anthocyanins in basil (Ocimum basilicum L.). J Agric Food Chem 46:1734–1738

    CAS  Google Scholar 

  • Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf 12:483–508

    CAS  Google Scholar 

  • Politeo O, Jukic M, Milos M (2007) Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem 101:379–385

    CAS  Google Scholar 

  • Prabhu K, Lobo R, Shirwaikar A (2009) Ocimum gratissimum: a review of its chemical, pharmacological and ethnomedicinal properties. Open Complement Med J 1:1–15

    Google Scholar 

  • Prakash P, Gupta N (2005) Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Ind J Physiol Pharmacol 49(2):125–131

    CAS  Google Scholar 

  • Qiang Z (2011) Bioavailability and metabolism of botanical constituents and enhancement of intestinal barrier function by caffeic acid derivatives in Caco-2 cells. Dissertation, Iowa State University

  • Rafatian G, Khodagholi F, Farimani MM, Abraki SB, Gardaneh M (2012) Increase of autophagy and attenuation of apoptosis by Salvigenin promote survival of SH-SY5Y cells following treatment with H2O2. Mol Cell Biochem 371:9–22

    PubMed  CAS  Google Scholar 

  • Rahman S, Islam R, Kamruzzaman M, Alam K, Jamal A (2011) Ocimum sanctum L: a review of phytochemical and pharmacological profile. Am J Drug Disc Dev. https://doi.org/10.3923/rjmp.2011

    Article  Google Scholar 

  • Rahmana S, Muktaa Z, Hossainb M (2009) Isolation and characterization of β-sitosterol-d-glycoside from petroleum extract of the leaves of Ocimum sanctum L. Asian J Food Agro-Ind 2:39–43

    Google Scholar 

  • Rajalakshmi S, Sivanandam G, Veluchamy G (1986) Role of tulsi (Ocimum sanctum Linn.) in the management of Manjal Kamalai (viral hepatitis). J Res Ayurv Siddha 9:118–123

    Google Scholar 

  • Rasekh HR, Hosseinzadeh L, Mehri S, Kamli-Nejad M, Aslani M, Tanbakoosazan F (2012) Safety assessment of Ocimum basilicum hydroalcoholic extract in wistar rats: acute and subchronic toxicity studies. Iran J Basic Med Sci 15:645–653

    PubMed  PubMed Central  Google Scholar 

  • Reddy G, Melkhani A, Kalyani G, Rao JV, Shirwaikar A, Kotian M, Ramani R, Aithal K, Udupa A, Bhat G (1991) Chemical and pharmacological investigations of Limnophila conferta and Limnophila heterophylla. Int J Pharmacogn 29:145–153

    CAS  Google Scholar 

  • Rehman SU, Kim IS, Kang KS, Yoo HH (2015) HPLC determination of esculin and esculetin in rat plasma for pharmacokinetic studies. J Chromatogr Sci 53:1322–1327

    PubMed  CAS  Google Scholar 

  • Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM (2016) Biosynthesis of essential oils in aromatic plants: a review. Food Rev Int 32:117–160

    CAS  Google Scholar 

  • Rigano D, Formisano C, Basile A, Lavitola A, Senatore F, Rosselli S, Bruno M (2007) Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytother Res 21:395–397

    PubMed  CAS  Google Scholar 

  • Rodríguez-Alcalá LM, Ares I, Fontecha J, Juarez M, Castellano V, Martínez-Larrañaga MR, Anadón A, Martínez MA (2015) Oral absorption and disposition of alpha-linolenic, rumenic and vaccenic acids after administration as a naturally enriched goat dairy fat to rats. Lipids 50:659–666

    PubMed  Google Scholar 

  • Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ (2019) Naturally Lignan-rich foods: a dietary tool for health promotion. Molecules 24:917–926

    PubMed Central  Google Scholar 

  • Sacchetti G, Medici A, Maietti S, Radice M, Muzzoli M, Manfredini S, Braccioli E, Bruni R (2004) Composition and functional properties of the essential oil of Amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J Agric Food Chem 52:3486–3491

    PubMed  CAS  Google Scholar 

  • Saeidnia S, Manayi A, Gohari AR, Abdollahi M (2014) The story of beta-sitosterol—a review. Eur J Med Plants 4(5):590–597

    CAS  Google Scholar 

  • Sampath S, Mahapatra S, Padhi M, Sharma R, Talwar A (2015) Holy basil (Ocimum sanctum Linn.) leaf extract enhances specific cognitive parameters in healthy adult volunteers: a placebo controlled study. Indian J Physiol Pharmacol 59:69–77

    PubMed  CAS  Google Scholar 

  • Sánchez-Maldonado A, Schieber A, Gänzle M (2011) Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 111:1176–1184

    PubMed  Google Scholar 

  • Sanda K, Koba K, Nambo P, Gaset A (1998) Chemical investigation of Ocimum species growing in Togo. Flavour Fragr J 13:226–232

    CAS  Google Scholar 

  • Santos-Sánchez NF, Salas-Coronado R, Hernández-Carlos B, Villanueva-Cañongo C (2019) Shikimic acid pathway in biosynthesis of phenolic compounds, plant physiological aspects of phenolic compounds. IntechOpen, pp 1–15

  • Satapathy S, Das N, Bandyopadhyay D, Mahapatra SC, Sahu DS, Meda M (2017) Effect of tulsi (Ocimum sanctum Linn.) supplementation on metabolic parameters and liver enzymes in young overweight and obese subjects. Ind J Clin Biochem 32:357–363

    CAS  Google Scholar 

  • Sawabe A, Nesumi C, Morita M, Matsumoto S, Matsubara Y, Komemushi S (2005) Glycosides in African dietary leaves, Hibiscus sabdariffa. J Oleo Sci 54:185–191

    CAS  Google Scholar 

  • Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2(25):1–8

    Google Scholar 

  • Saxena RC, Singh R, Kumar P, Negi MPS, Saxena VS, Geetharani P, Allan JJ, Venkateshwarlu K (2012) Efficacy of an extract of Ocimum tenuiflorum (OciBest) in the management of general stress: a double-blind, placebo-controlled study. Evid-Based Compl Alternat Med 2012:1–7

    Google Scholar 

  • Schinella G, Aquila S, Dade M, Giner R, del Carmen Recio M, Spegazzini E, de Buschiazzo P, Tournier H, Ríos JL (2008) Anti-inflammatory and apoptotic activities of pomolic acid isolated from Cecropia pachystachya. Planta Med 74:215–220

    PubMed  CAS  Google Scholar 

  • Schühly W, Heilmann J, Calis I, Sticher O (1999) New triterpenoids with antibacterial activity from Zizyphus joazeiro. Planta Med 65:740–743

    PubMed  Google Scholar 

  • Selvi MT, Thirugnanasampandan R, Sundarammal S (2015) Antioxidant and cytotoxic activities of essential oil of Ocimum canum Sims. from India. J Saud Chem Soc 19:97–100

    Google Scholar 

  • Senthil S, Sridevi M, Pugalendi K (2007) Protective effect of ursolic acid against myocardial ischemia induced by isoproterenol in rats. Toxicol Mech Methods 17:57–65

    PubMed  CAS  Google Scholar 

  • Shahrzad S, Aoyagi K, Winter A, Koyama A, Bitsch I (2001) Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J Nutr 131:1207–1210

    PubMed  CAS  Google Scholar 

  • Sharkar P, Rahman MM, Haque Masum GZ, Nayeem MA, Hossen MM, Azad AK (2013) Ethnomedicinal importance of the plants in villages in Kushtia Sador and Mirpur Upozila, Bangladesh. J Herb Spice Med Plants 19:401–417

    Google Scholar 

  • Sharma M, Agrawal SK, Sharma P, Chadha B, Khosla M, Saxena A (2010) Cytotoxic and apoptotic activity of essential oil from Ocimum viride towards COLO 205 cells. Food Chem Toxicol 48:336–344

    PubMed  CAS  Google Scholar 

  • Sharma A, Meena A, Meena R (2012) Antimicrobial activity of plant extracts of Ocimum tenuiflorum. Int J Pharm Tech Res 4:76–180

    Google Scholar 

  • Sharma P, Prakash O, Shukla A, Singh Rajpurohit C, Vasudev P, Luqman S, Kumar Srivastava S, Bhushan Pant A, Khan F (2016) Structure–activity relationship studies on holy basil (Ocimum sanctum L.) based flavonoid orientin and its analogue for cytotoxic activity in liver cancer cell line Hepg2. Comb Chem High Throughput Screen 19:656–666

    PubMed  CAS  Google Scholar 

  • Shoeb M, Jaspars M, MacManus SM, Celik S, Nahar L, Kong-Thoo-Lin P, Sarker SD (2007) Anti-colon cancer potential of phenolic compounds from the aerial parts of Centaurea gigantea (Asteraceae). J Nat Med 61:164

    CAS  Google Scholar 

  • Siddiqui BS, Aslam H, Ali ST, Begum S, Khatoon N (2007) Two new triterpenoids and a steroidal glycoside from the aerial parts of Ocimum basilicum. Chem Pharm Bull 55:516–519

    PubMed  CAS  Google Scholar 

  • Sidorov R, Tsydendambaev V (2014) Biosynthesis of fatty oils in higher plants. Russ J Plant Physiol 61(1):1–18

    CAS  Google Scholar 

  • Silva MGV, Vieira ÍG, Mendes FN, Albuquerque IL, Dos Santos RN, Silva FO, Morais SM (2008) Variation of ursolic acid content in eight Ocimum species from northeastern Brazil. Molecules 13:2482–2487

    PubMed  PubMed Central  CAS  Google Scholar 

  • Silva-Alves KS, Ferreira-da-Silva FW, Peixoto-Neves D, Viana-Cardoso KV, Moreira-Júnior L, Oquendo MB, Oliveira-Abreu K, Albuquerque AAC, Coelho-de-Souza AN, Leal-Cardoso JH (2013) Estragole blocks neuronal excitability by direct inhibition of Na+ channels. Braz J Med Biol Res 46:1056–1063

    PubMed  PubMed Central  CAS  Google Scholar 

  • Simon JE, Quinn J, Murray RG (1990) Basil: a source of essential oils. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 484–489

    Google Scholar 

  • Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) Basil: a source of aroma compounds and a popular culinary and ornamental herb. In: Janick J (ed) Perspectives on new crop new uses. ASHS Press, Alexandria, pp 499–505

    Google Scholar 

  • Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204

    PubMed  CAS  Google Scholar 

  • Singh D, Chaudhuri PK (2018) A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crop Prod 118:367–382

    CAS  Google Scholar 

  • Singh S, Majumdar D (1996) Effect of fixed oil of Ocimum sanctum against experimentally induced arthritis and joint edema in laboratory animals. Int J Pharmacogn 34:218–222

    CAS  Google Scholar 

  • Singh S, Majumdar D (1997) Evaluation of antiinflammatory activity of fatty acids of Ocimum sanctum fixed oil. Ind J Exp Biol 35:380–383

    CAS  Google Scholar 

  • Singh RP, Agrawal P, Yim D, Agarwal C, Agarwal R (2005) Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: structure–activity relationship with linarin and linarin acetate. Carcinogenesis 26:845–854

    PubMed  CAS  Google Scholar 

  • Singh D, Kumar Chaudhuri P, Darokar MP (2014) New antiproliferative tricyclic sesquiterpenoid from the leaves of Ocimum sanctum. Helv Chim Acta 97:708–711

    CAS  Google Scholar 

  • Skaltsa H, Tzakou O, Singh M (1999) Note polyphenols of Ocimum sanctum from suriname. Pharm Biol 37:92–94

    CAS  Google Scholar 

  • Souto-Maior FN, Fonsêca DVd, Salgado PRR, Monte LdO, de Sousa DP, de Almeida RN (2017) Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide. Pharm Biol 55:63–67

    PubMed  CAS  Google Scholar 

  • Subramanian M, Chintalwar GJ, Chattopadhyay S (2005) Antioxidant and radioprotective properties of an Ocimum sanctum polysaccharide. Redox Rep 10:257–264

    PubMed  CAS  Google Scholar 

  • Suzuki A, Shirota O, Mori K, Sekita S, Fuchino H, Takano A, Kuroyanagi M (2009) Leishmanicidal active constituents from Nepalese medicinal plant tulsi (Ocimum sanctum L.). Chem Pharm Bull 57:245–251

    PubMed  CAS  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431–434

    CAS  Google Scholar 

  • Tan PV, Nyasse B, Dimo T, Mezui C (2002) Gastric cytoprotective anti-ulcer effects of the leaf methanol extract of Ocimum suave (Lamiaceae) in rats. J Ethnopharmacol 82:69–74

    PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    PubMed  CAS  Google Scholar 

  • Tchoumbougnang F, Zollo PA, Dagne E, Mekonnen Y (2005) In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71:20–23

    PubMed  CAS  Google Scholar 

  • Tewari D, Sah A, Pandey H, Meena H, Meena R, Ramaswamy R, Reddy RC, Deo YK, Bandari S, Bhadra Dev P (2012) A review on phytoconstituents of Ocimum (Tulsi). Int J Ayurvedic Med 3:1–9

    Google Scholar 

  • Thaweboon S, Thaweboon B (2009) In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. SE Asian J Trop Med 40(5):1025–1033

    Google Scholar 

  • Thilakarathna S, Rupasinghe H (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387

    PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Pathak A, Chauhan D, Dubey N, Rai A, Prasad R (2015) An efficient approach of laser induced breakdown spectroscopy (LIBS) and ICAP-AES to detect the elemental profile of Ocimum L. species. Biocatal Agric Biotechnol 4:471–479

    Google Scholar 

  • Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Díaz JA, Maza PK, Dias Filho BP, Cortez DAG, Alviano DS, Maria do Socorro SR, Lopes AHC, Alviano CS (2006) Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 55:99–105

    PubMed  CAS  Google Scholar 

  • Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan K, Unnikrishnan M (2000) Radiation protection by the Ocimum flavonoids orientin and vicenin: mechanisms of action. Rad Res 154:455–460

    CAS  Google Scholar 

  • US MR, Zin T, Abdurazak M, Ado Ahmad B (2015) Chemistry and pharmacology of syringin, a novel bioglycoside: a review. Asian J Pharm Clin Res 8:20–25

    CAS  Google Scholar 

  • Valentová K, Vrba J, Bancířová M, Ulrichová J, Křen V (2014) Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem Toxicol 68:267–282

    PubMed  Google Scholar 

  • Vani SR, Cheng S, Chuah C (2009) Comparative study of volatile compounds from genus Ocimum. Am J Appl Sci 6:523

    CAS  Google Scholar 

  • Vieira RF, Grayer RJ, Paton AJ (2003) Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry 63:555–567

    PubMed  CAS  Google Scholar 

  • Vinukonda VP, Palakeerti SK, Nalakurthi BC, Palleti JD (2012) In silico studies of Justicia adhatoda, Ocimum sanctum plant compounds as mycobacterium tuberculosis FTSZ inhibitors. Int J Bioassays 1(8):22–25

    Google Scholar 

  • Viskupicova J, Ondrejovic M, Sturdik E (2008) Bioavailability and metabolism of flavonoids. J Food Nutr Res 47(4):151–162

    CAS  Google Scholar 

  • Waka M, Hopkins R, Glinwood R, Curtis C (2006) The effect of repellents Ocimum forskolei and deet on the response of Anopheles stephensi to host odours. Med Vet Entomol 20:373–376

    PubMed  CAS  Google Scholar 

  • Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, Xiao W (2018) Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One 13:1–12

    Google Scholar 

  • Xaasan CC, Ciilmi CX, Faarax MX, Passannanti S, Piozzi F, Paternostro M (1980) Unusual flavones from Ocimum canum. Phytochemistry 19:2229–2230

    CAS  Google Scholar 

  • Yordi EG, Matos M, Martínez AP, Tornes A, Santana L, Molina E, Uriarte E (2017) In s∆ilico genotoxicity of coumarins: application of the phenol-explorer food database to functional food science. Food Funct 8:2958–2966

    Google Scholar 

  • Zhao J, Li R, Pawlak A, Henklewska M, Sysak A, Wen L, Yi J-E, Obmińska-Mrukowicz B (2018) Antitumor activity of betulinic acid and betulin in canine cancer cell lines. In Vivo 32:1081–1088

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zheljazkov VD, Callahan A, Cantrell CL (2007a) Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J Agric Food Chem 56:241–245

    PubMed  Google Scholar 

  • Zheljazkov VD, Cantrell CL, Tekwani B, Khan SI (2007b) Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting. J Agric Food Chem 56:380–385

    PubMed  Google Scholar 

  • Zhu J, Sanidad KZ, Sukamtoh E, Zhang G (2017) Potential roles of chemical degradation in the biological activities of curcumin. Food Funct 8:907–914

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank both Minia and Deraya Universities, Minia, Egypt, for all facilities, support and encouragement offered to us during this work.

Author information

Authors and Affiliations

Authors

Contributions

Conflict of interest

All authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Usama Ramadan Abdelmohsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, E.M., Abdelmohsen, U.R., Khalil, H.E. et al. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem Rev 19, 907–953 (2020). https://doi.org/10.1007/s11101-020-09690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09690-9

Keywords

Navigation