Photosynthetica 2018, 56(3):763-775 | DOI: 10.1007/s11099-017-0725-0

Comparative studies of compatible and incompatible pepper-Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide

A. Janeczko1,*, M. Dziurka1, G. Gullner2, M. Kocurek3, M. Rys1, D. Saja1, A. Skoczowski1, I. Tóbiás2, A. Kornas4, B. Barna2
1 Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
2 Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
3 Institute of Biology, The Jan Kochanowski University, Kielce, Poland
4 Institute of Biology, Pedagogical University of Cracow, Kraków, Poland

The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves.

Additional key words: brassinosteroids; CO2 assimilation; systemic virus response; water band index; xanthophyll cycle

Received: August 1, 2016; Accepted: February 20, 2017; Prepublished online: September 1, 2018; Published: August 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Janeczko, A., Dziurka, M., Gullner, G., Kocurek, M., Rys, M., Saja, D., ... Barna, B. (2018). Comparative studies of compatible and incompatible pepper-Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide. Photosynthetica56(3), 763-775. doi: 10.1007/s11099-017-0725-0
Download citation

Supplementary files

Download fileerratum Janeczko 1485.pdf

File size: 56.89 kB

References

  1. Almási A., Harsányi A., Gáborjányi R.: Photosynthetic alterations of virus infected plants.-Acta Phytopathol. Hun. 36: 15-29, 2001. Go to original source...
  2. Balachandran S., Osmond C.B., Makino A.: Effects of two strains of tobacco mosaic virus on photosynthetic characteristics and nitrogen partitioning in leaves of Nicotiana tabacum cv Xanthi during photoacclimation under two nitrogen nutrition regimes.-Plant Physiol. 104: 1043-1050, 1994. Go to original source...
  3. Baron M., Rahoutei J., Lazaro J. et al.: Photosystem II response to biotic and abiotic stress.-In: Mathis P. (ed.): Photosynthesis from Light to Biosphere. Pp. 897-901. Kluwer Academic Publishers, The Hague 1995. Go to original source...
  4. Critchley J.H., Zeeman S.C., Takaha T. et al.: A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis.-Plant J. 26: 89-100, 2001. Go to original source...
  5. Dobrikova A.G., Vladkova R.S., Rashkov G.D. et al.: Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions.-Plant Physiol. Bioch. 80: 75-82, 2014. Go to original source...
  6. Demmig-Adams B., Adams W.W. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.-Trends Plant Sci. 1: 21-26, 1996. Go to original source...
  7. Elbein A.D., Pan Y.T., Pastuszak I. et al.: New insights on trehalose: a multifunctional molecule.-Glycobiology 13: 17R-27R, 2003. Go to original source...
  8. El Sayed A.I., Rafudeen M.S., Golldack D.: Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress.-Plant Biol. 16: 1-8, 2014. Go to original source...
  9. Filella I., Amaro T., Araus J.L. et al.: Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI).-Physiol. Plantarum 96: 211-216, 1996. Go to original source...
  10. Funayama S., Sonoike K., Terashima I.: Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus.-Photosynth. Res. 52: 253-261, 1997. Go to original source...
  11. Gamon J.A., Peñuelas J., Field C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.-Remote Sens. Environ. 41: 35-44, 1992. Go to original source...
  12. Gamon J.A., Serrano L., Surfus J.: The photochemical reflectance index: an optical indicator of photosynthetic radiation-use efficiency across species, functional types and nutrient levels.-Oecologia 112: 492-501, 1997. Go to original source...
  13. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation.-Biochim. Biophys. Acta 1817: 1490-1498, 2012. Go to original source...
  14. Gonçalves M. C., Vega J., Oliveira J.G. et al.: Sugarcane yellow leaf virus infection leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves.-Fitopatol. Bras. 30: 10-16, 2005. Go to original source...
  15. Gómez-Ariza J., Campo S., Rufat M. et al.: Sucrose-mediated priming of plant defence responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.-Mol. Plant Microbe In. 20: 832-842, 2007. Go to original source...
  16. Grunwald C.: Sterol molecular modifications influencing membrane permeability.-Plant Physiol. 54: 624-628, 1974. Go to original source...
  17. Guo Y.P., Zhou H.F., Zeng G.H. et al.: [Effects of high temperature stress on photosynthetic rate and photosystem II activity in citrus.]-Chin. J. Appl. Ecol. 14: 867-870, 2003. [In Chinese]
  18. Gururani M. A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.-Mol. Plant 8: 1304-1320, 2015. Go to original source...
  19. Hendry G.A.F. Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal.-New Phytol. 123: 3-14, 1993. Go to original source...
  20. Herbers K., Meuwly P., Métraux J.P.: Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage.-FEBS Lett. 397: 239-244, 1996. Go to original source...
  21. Herbers K., Sonnewald U.: Altered gene expression brought about by inter-and intracellularly formed hexoses and its possible implications for plant-pathogen interactions.-J. Plant Res. 111: 323-328, 1998. Go to original source...
  22. Herbers K., Takahata Y., Melzer M. et al.: Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco.-Mol. Plant Pathol. 1: 51-59, 2000. Go to original source...
  23. Holá D.: Brassinosteroids and photosynthesis.-In: Hayat S., Ahmad A. (ed.): Brassinosteroids: a Class of Plant Hormone. Pp. 143-192. Springer, Dordrecht, Heidelberg, New York 2011. Go to original source...
  24. Janeczko A., Koscielniak J., Pilipowicz M. et al.: Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress.-Photosynthetica 43: 293-298, 2005. Go to original source...
  25. Janeczko A., Biesaga-Koscielniak J., Okleątková J. et al.: Role of 24-epibrassinolide in wheat production: physiological effects and uptake.-J. Agron. Crop Sci. 196: 311-321, 2010. Go to original source...
  26. Janeczko A., Okleątková J., Pociecha E. et al.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley.-Acta Physiol. Plant. 33: 1249-1259, 2011. Go to original source...
  27. Janeczko A., Gruszka D., Pociecha E. et al.: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis.-Plant Physiol. Bioch. 99: 126-141, 2016. Go to original source...
  28. Juhász C., Tóbiás I., Ádám A.L. et al.: Pepper 9-and 13-lipoxygenase genes are differentially activated by two tobamoviruses and by hormone treatments.-Physiol. Mol. Plant P. 92: 59-69, 2015. Go to original source...
  29. Kaplan F., Guy C.L.: Beta-Amylase induction and the protective role of maltose during temperature shock.-Plant Physiol. 135: 1674-1684, 2004. Go to original source...
  30. Knipling E.B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.-Remote Sens. Environ. 1: 155-159, 1970. Go to original source...
  31. Koch K.E.: Carbohydrate-modulated gene expression in plants.-Annu. Rev. Plant Phys. 47: 509-540, 1996. Go to original source...
  32. Krezhova D., Dikova B., Maneva S.: Ground based hyperspectral remote sensing for disease detection of tobacco plants.-Bulg. J. Agric. Sci. 20: 1142-1150, 2014.
  33. Livingston D.P. III, Henson C.A.: Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening.-Plant Physiol. 116: 403-408, 1998. Go to original source...
  34. Livingston D.P. III, Hincha D.K., Heyer A.G.: Fructan and its relationship to abiotic stress tolerance in plants.-Cell. Mol. Life Sci. 66: 2007-2023, 2009. Go to original source...
  35. Lucas W.J., Olesinski A., Hull R.J. et al.: Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants.-Planta 190: 88-96, 1993. Go to original source...
  36. Moghaddam B.M.R, van den Ende W.: Sugars and plant innate immunity.-J. Exp. Bot. 63: 3989-3998, 2012. Go to original source...
  37. Müller J., Aeschbacher R.A., Sprenger N. et al.: Disaccharidemediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves.-Plant Physiol. 123: 265-274, 2000. Go to original source...
  38. Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.-Photosynth. Res. 94: 275-290, 2007. Go to original source...
  39. Peñuelas J., Filella I., Biel C. et al.: The reflectance at the 950-970 nm region as an indicator of plant water status.-Int. J. Remote Sens. 14: 1887-1905, 1993. Go to original source...
  40. Peñuelas J., Gamon J.A., Fredeen A.L. et al.: Reflectance indices associated with physiological changes in nitrogen-and waterlimited sunflower leaves.-Remote Sens. Environ. 48: 135-146, 1994. Go to original source...
  41. Peñuelas J., Filella I., Baret F.: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectra reflectance.-Photosynthetica 31: 221-230, 1995a.
  42. Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with spectral reflectance.-New Physiol. 131: 291-296, 1995b. Go to original source...
  43. Peñuelas J., Isla R., Filella I. et al.: Visible and near-infrared reflectance assessment of salinity effects on barley.-Crop Sci. 37: 198-202, 1997. Go to original source...
  44. Pérez-Bueno M.L., Rahoutei J., Sajnani C. et al.: Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses.-Proteomics 4: 418-425, 2004. Go to original source...
  45. Rahoutei J., Barón M., García-Luque I. et al.: Effect of tobamovirus infection on thermoluminescence characteristics of chloroplasts from infected plants.-Z. Naturforsch. C 54: 634-639, 1999. Go to original source...
  46. Rahoutei J., García-Luque I., Barón M.: Inhibition of photosynthesis by viral infection: effect on PSII structure and function.-Physiol. Plantarum 110: 286-292, 2000. Go to original source...
  47. Roitsch T., Balibrea M.E., Hofmann M. et al.: Extracellular invertase: key metabolic enzyme and PR protein.-J. Exp. Bot. 54: 513-524, 2003. Go to original source...
  48. Rolland F., Baena-Gonzalez E., Sheen J.: Sugar sensing and signaling in plants: conserved and novel mechanisms.-Annu. Rev. Plant Biol. 57: 675-709, 2006. Go to original source...
  49. Rys M., Juhász C., Surowka E. et al.: Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy.-Plant Physiol. Bioch. 83: 267-278, 2014. Go to original source...
  50. Ryąlavá H., Müller K., Semorádová S. et al.: Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y.-Photosynthetica 41: 357-363, 2003. Go to original source...
  51. Shalitin D., Wolf S.: Cucumber mosaic virus infection affects sugar transport in melon plants.-Plant Physiol. 123: 597-604, 2000. Go to original source...
  52. Skoczowski A., Janeczko A., Gullner G. et al.: Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescens.-J. Therm. Anal. Calorim. 104: 131-139, 2011. Go to original source...
  53. Smeekens S., Ma J., Hanson J. et al.: Sugar signals and molecular networks controlling plant growth.-Curr. Opin. Plant Biol. 13: 274-279, 2010. Go to original source...
  54. Solovchenko A.: Quantification of screening pigments and their efficiency in situ.-In: Solovchenko A. (ed.): Photoprotection in Plants. Pp. 119-141. Springer Series in Biophysics 14, Springer-Verlag, Berlin, Heidelberg 2010. Go to original source...
  55. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetics samples.-In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.
  56. Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis.-Biochim. Biophys. Acta 1797: 1313-1326, 2010. Go to original source...
  57. Tauzin A.S., Giardina T.: Sucrose and invertases, a part of the plant defense response to the biotic stresses.-Front. Plant Sci. 5: 293, 2014. Go to original source...
  58. Tóbiás I., Fraser R.S.S., Gerwitz A.: The gene-for-gene relationship between Capsicum annuum L. and tobacco mosaic virus: effects on virus multiplication, ethylene synthesis and accumulation of pathogenesis-related proteins.-Physiol. Mol. Plant Pathol. 35: 271-286, 1989. Go to original source...
  59. Velasco L., Janssen D., Ruiz-Garcia L. et al.: The complete nucleotide sequence and development of a diferential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L 3 resistance in pepper.-J. Virol. Methods 106: 135-140, 2002. Go to original source...
  60. Wang Z-Y.: Brassinosteroids modulate plant immunity at multiple levels.-P. Natl. Acad. Sci. USA 109: 7-8, 2012. Go to original source...
  61. Yuan L., Shu S., Sun J. et al.: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress.-Photosynth. Res. 112: 205-214, 2012. Go to original source...
  62. Yusuf M., Fariduddin Q., Ahmad I. et al.: Brassinosteroidmediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel.-Physiol. Mol. Biol. Plants 20: 449-460, 2014. Go to original source...