Skip to main content

Advertisement

Log in

Biodistribution and Pharmacokinetics of Dapivirine-Loaded Nanoparticles after Vaginal Delivery in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To assess the potential of polymeric nanoparticles (NPs) to affect the genital distribution and local and systemic pharmacokinetics (PK) of the anti-HIV microbicide drug candidate dapivirine after vaginal delivery.

Methods

Dapivirine-loaded, poly(ethylene oxide)-coated poly(epsilon-caprolactone) (PEO-PCL) NPs were prepared by a nanoprecipitation method. Genital distribution of NPs and their ability to modify the PK of dapivirine up to 24 h was assessed after vaginal instillation in a female mouse model. Also, the safety of NPs upon daily administration for 14 days was assessed by histological analysis and chemokine/cytokine content in vaginal lavages.

Results

PEO-PCL NPs (180–200 nm) were rapidly eliminated after administration but able to distribute throughout the vagina and lower uterus, and capable of tackling mucus and penetrate the epithelial lining. Nanocarriers modified the PK of dapivirine, with higher drug levels being recovered from vaginal lavages and vaginal/lower uterine tissues as compared to a drug suspension. Systemic drug exposure was reduced when NPs were used. Also, NPs were shown safe upon administration for 14 days.

Conclusions

Dapivirine-loaded PEO-PCL NPs were able to provide likely favorable genital drug levels, thus attesting the potential value of using this vaginal drug delivery nanosystem in the context of HIV prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

λz :

Apparent terminal elimination rate constant

AE%:

Association efficiency

AUC0.25-24h :

Area under the concentration-time curve between 15 min and 24 h

C max :

Maximum observed concentration

DL%:

Drug loading

EC50 :

Half maximal effective concentration

F rel :

Relative bioavailability

IL:

Interleukin

KC:

Keratinocyte-derived chemokine

MIP-1α:

Macrophage inflammatory protein

MPPs:

Mucus-penetrating particles

N-9:

Nonoxynol-9

NPs:

Nanoparticles

PBS:

Phosphate buffered saline

PCL:

Poly(ε-caprolactone)

PD:

Pharmacodynamics

PdI:

Polydispersity index

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PK:

Pharmacokinetics

PLGA:

Poly(D,L-lactide-co-glycolide)

PPO:

Poly(propylene oxide)

PrEP:

Pre-exposure prophylaxis

rhod-123-PCL:

Rhodamine-123-labeled poly(ε-caprolactone)

s.d.:

Standard deviation

s.e.m.:

Standard error of the mean

t 1/2β :

Terminal elimination half-life

t max :

C max time

REFERENCES

  1. Baeten J, Celum C. Systemic and topical drugs for the prevention of HIV infection: antiretroviral pre-exposure prophylaxis. Annu Rev Med. 2013;64:219–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Abdool Karim SS, Baxter C. Overview of microbicides for the prevention of human immunodeficiency virus. Best Pract Res Clin Obstet Gynaecol. 2012;26(4):427–39.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Abdool Karim SS, Kashuba AD, Werner L, Abdool Karim Q. Drug concentrations after topical and oral antiretroviral pre-exposure prophylaxis: implications for HIV prevention in women. Lancet. 2011;378(9787):279–81.

    Article  PubMed Central  Google Scholar 

  5. Keller MJ, Madan RP, Torres NM, Fazzari MJ, Cho S, Kalyoussef S, et al. A randomized trial to assess anti-HIV activity in female genital tract secretions and soluble mucosal immunity following application of 1% tenofovir gel. PLoS One. 2011;6(1):e16475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dobard C, Sharma S, Martin A, Pau CP, Holder A, Kuklenyik Z, et al. Durable protection from vaginal simian-human immunodeficiency virus infection in macaques by tenofovir gel and its relationship to drug levels in tissue. J Virol. 2012;86(2):718–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Duwal S, Schutte C, von Kleist M. Pharmacokinetics and pharmacodynamics of the reverse transcriptase inhibitor tenofovir and prophylactic efficacy against HIV-1 infection. PLoS One. 2012;7(7):e40382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nuttall JP, Thake DC, Lewis MG, Ferkany JW, Romano JW, Mitchnick MA. Concentrations of dapivirine in the rhesus macaque and rabbit following once daily intravaginal administration of a gel formulation of [14C]dapivirine for 7 days. Antimicrob Agents Chemother. 2008;52(3):909–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nel AM, Smythe SC, Habibi S, Kaptur PE, Romano JW. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. hydroxyethyl cellulose-based universal placebo gel. J Acquir Immune Defic Syndr. 2010;55(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nel AM, Coplan P, Smythe SC, McCord K, Mitchnick M, Kaptur PE, et al. Pharmacokinetic assessment of dapivirine vaginal microbicide gel in healthy, HIV-negative women. AIDS Res Hum Retroviruses. 2010;26(11):1181–90.

    Article  CAS  PubMed  Google Scholar 

  11. Nel A, Smythe S, Young K, Malcolm K, McCoy C, Rosenberg Z, et al. Safety and pharmacokinetics of dapivirine delivery from matrix and reservoir intravaginal rings to HIV-negative women. J Acquir Immune Defic Syndr. 2009;51(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  12. Romano J, Variano B, Coplan P, Van Roey J, Douville K, Rosenberg Z, et al. Safety and availability of dapivirine (TMC120) delivered from an intravaginal ring. AIDS Res Hum Retroviruses. 2009;25(5):483–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hardy E, Hebling EM, Sousa MH, Almeida AF, Amaral E. Delivery of microbicides to the vagina: difficulties reported with the use of three devices, adherence to use and preferences. Contraception. 2007;76(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  14. Hurt CB, Eron Jr JJ, Cohen MS. Pre-exposure prophylaxis and antiretroviral resistance: HIV prevention at a cost? Clin Infect Dis. 2011;53(12):1265–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hendrix CW, Chen BA, Guddera V, Hoesley C, Justman J, Nakabiito C, et al. MTN-001: randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments. PLoS One. 2013;8(1):e55013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. das Neves J, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev. 2010;62(4–5):458–77.

    Article  PubMed  Google Scholar 

  17. Mallipeddi R, Rohan LC. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin Drug Deliv. 2010;7(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  18. das Neves J, Rocha CM, Gonçalves MP, Carrier RL, Amiji M, Bahia MF, et al. Interactions of microbicide nanoparticles with a simulated vaginal fluid. Mol Pharm. 2012;9(11):3347–56.

    Article  PubMed  Google Scholar 

  19. das Neves J, Michiels J, Arien KK, Vanham G, Amiji M, Bahia MF, et al. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res. 2012;29(6):1468–84.

    Article  PubMed  Google Scholar 

  20. das Neves J, Araújo F, Andrade F, Michiels J, Ariën KK, Vanham G, et al. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine. Mol Pharm. 2013;10(7):2793–807.

    Article  PubMed  Google Scholar 

  21. das Neves J, Sarmento B, Amiji MM, Bahia MF. Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles. J Pharm Biomed Anal. 2010;52(2):167–72.

    Article  PubMed  Google Scholar 

  22. Catalone BJ, Kish-Catalone TM, Budgeon LR, Neely EB, Ferguson M, Krebs FC, et al. Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides. Antimicrob Agents Chemother. 2004;48(5):1837–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kanazawa T, Takashima Y, Hirayama S, Okada H. Effects of menstrual cycle on gene transfection through mouse vagina for DNA vaccine. Int J Pharm. 2008;360(1–2):164–70.

    Article  CAS  PubMed  Google Scholar 

  24. Ensign LM, Henning A, Schneider C, Maisel K, Wang YY, Porosoff MD, et al. Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol Pharm. 2013;10(6):2176–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sherwood JK, Zeitlin L, Chen X, Whaley KJ, Cone RA, Saltzman WM. Residence half-life of IgG administered topically to the mouse vagina. Biol Reprod. 1996;54(1):264–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cu Y, Booth CJ, Saltzman WM. In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J Control Release. 2011;156(2):258–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. das Neves J, Sarmento B, Amiji M, Bahia MF. Development and validation of a HPLC method for the assay of dapivirine in cell-based and tissue permeability experiments. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;911:76–83.

    Article  PubMed  Google Scholar 

  28. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res. 2009;26(3):502–11.

    Article  CAS  PubMed  Google Scholar 

  30. Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8(6):526–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res. 2006;23(11):2638–45.

    Article  CAS  PubMed  Google Scholar 

  32. das Neves J, Amiji M, Bahia MF, Sarmento B. Assessing the physical-chemical properties and stability of dapivirine-loaded polymeric nanoparticles. Int J Pharm. 2013;456(2):307–14.

    Article  PubMed  Google Scholar 

  33. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev Immunol. 2008;8(6):447–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cu Y, Saltzman WM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm. 2009;6(1):173–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yang M, Lai SK, Wang YY, Zhong W, Happe C, Zhang M, et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem Int Ed Engl. 2011;50(11):2597–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79.

    Article  PubMed  Google Scholar 

  37. Lai SK, Hida K, Shukair S, Wang YY, Figueiredo A, Cone R, et al. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J Virol. 2009;83(21):11196–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):389–99.

    Article  PubMed  Google Scholar 

  39. Malik R, Maikhuri JP, Gupta G, Misra A. Biodegradable nanoparticles in the murine vagina: trans-cervical retrograde transport and induction of proinflammatory cytokines. J Biomed Nanotechnol. 2011;7(1):45–6.

    Article  CAS  PubMed  Google Scholar 

  40. Adams JL, Kashuba AD. Formulation, pharmacokinetics and pharmacodynamics of topical microbicides. Best Pract Res Clin Obstet Gynaecol. 2012;26(4):451–62.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Liu Y, Zhu YY, Wei G, Lu WY. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: improved in vitro and in vivo sustained-release properties. Eur J Pharm Sci. 2009;37(3–4):306–12.

    Article  CAS  PubMed  Google Scholar 

  42. Bulletti C, de Ziegler D, Flamigni C, Giacomucci E, Polli V, Bolelli G, et al. Targeted drug delivery in gynaecology: the first uterine pass effect. Hum Reprod. 1997;12(5):1073–9.

    Article  CAS  PubMed  Google Scholar 

  43. Nuttall J, Kashuba A, Wang R, White N, Allen P, Roberts J, et al. Pharmacokinetics of tenofovir following intravaginal and intrarectal administration of tenofovir gel to rhesus macaques. Antimicrob Agents Chemother. 2012;56(1):103–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  45. Romano J, Kashuba A, Becker S, Cummins J, Turpin J. Pharmacokinetics and pharmacodynamics in HIV prevention; current status and future directions: a summary of the DAIDS and BMGF sponsored think tank on pharmacokinetics (PK)/pharmacodynamics (PD) in HIV prevention. AIDS Res Hum Retroviruses. 2013;29(11):1418–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Veazey RS, Shattock RJ, Klasse PJ, Moore JP. Animal models for microbicide studies. Curr HIV Res. 2012;10(1):79–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nuttall J, Kashuba A, Wang R, White N, Allen P, Roberts J, et al. The pharmacokinetics of tenofovir following intravaginal and intrarectal administration of tenofovir gel to Rhesus macaques. Antimicrob Agents Chemother. 2011;56(1):103–9.

    Article  PubMed  Google Scholar 

  48. Fletcher P, Harman S, Azijn H, Armanasco N, Manlow P, Perumal D, et al. Inhibition of human immunodeficiency virus type 1 infection by the candidate microbicide dapivirine, a nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother. 2009;53(2):487–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Di Fabio S, Van Roey J, Giannini G, van den Mooter G, Spada M, Binelli A, et al. Inhibition of vaginal transmission of HIV-1 in hu-SCID mice by the non-nucleoside reverse transcriptase inhibitor TMC120 in a gel formulation. AIDS. 2003;17(11):1597–604.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

José das Neves gratefully acknowledges Fundação para a Ciência e a Tecnologia (FCT), Portugal for financial support (grant SFRH/BD/43393/2008). This work was supported by a grant from FCT (VIH/SAU/0021/2011). The authors would like to express their gratitude to Catarina Ferreira (University of Beira Interior, Covilhã, Portugal) for histology slides preparation. Dapivirine was kindly provided by IPM. Dapivirine was originally developed by Tibotec Pharmaceuticals and licensed to IPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José das Neves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Detailed information on (1) sectioning of the mouse female genital tract, (2) methods used for tissue processing for fluorescence microscopy, and (3) validation parameters of the HPLC-UV method used is available. Also, methods and results for the 14-day toxicity assessment of dapivirine-loaded NPs and alcian blue staining of mucus present at the vaginal mucosa after washing are included. (DOCX 6593 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

das Neves, J., Araújo, F., Andrade, F. et al. Biodistribution and Pharmacokinetics of Dapivirine-Loaded Nanoparticles after Vaginal Delivery in Mice. Pharm Res 31, 1834–1845 (2014). https://doi.org/10.1007/s11095-013-1287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1287-x

KEY WORDS

Navigation