Skip to main content
Log in

The simulation on absorption properties of metamaterial/GaAs/electrode layer hybrid structure based Terahertz photoconductive detector

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Terahertz (THz) photodetectors have attracted great attention from scientists worldwide for their application in security checking, biomedical treatment and astronomical observation of remote stars and distant galaxies. As a typical THz detector, extrinsic GaAs based photoconductive detector is facing critical technical bottlenecks in the epitaxial growth of sufficiently thick and high-quality GaAs absorption layer. In this work, a novel THz photoconductive detector based on metamaterial/GaAs/electrode layer hybrid structure was designed and simulated. By setting the periodic split ring resonator (SRR) structure as 88 μm pitch with 8 μm width, the absorption peaks exist at the wavelength of about 142 and 367 μm, which originate from the resonant cavity and the SRR dipole resonance effect, and the novel device shows a significant enhancement compared with the conventional GaAs photoconductive detector. Thus, the necessary thickness of GaAs absorption-layer is largely reduced, and the resonant absorption peak can be modulated by changing the thickness of absorption layer. This work provides a novel device structure which can solve the critical epitaxial growth bottleneck of GaAs photoconductive detector and used for the astronomical observation, security check, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cardozo, B.L.: GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy Doctoral Thesis. University of California, Berkeley (2004)

    Book  Google Scholar 

  • Cardozo, B.L., Haller, E.E., Reichertz, L.A., Beeman, J.W.: Far-infrared absorption in GaAs: Te liquid phase epitaxial films. Appl. Phys. Lett. 83, 3990–3992 (2003)

    Article  ADS  Google Scholar 

  • Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011)

    Article  ADS  Google Scholar 

  • Katterloher, R.O., Jakob, G., Konuma, M., Krabbe, A., Haegel, N.M., Samperi, S.A., Beeman, J., Haller, E.E.: Liquid phase epitaxy centrifuge for growth of ultra-pure gallium arsenide for far infrared photoconductors. Proc. SPIE 4486, 200–209 (2002)

    Article  ADS  Google Scholar 

  • Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y.Q., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)

    Article  Google Scholar 

  • Ouchi, T., Kajiki, K., Koizumi, T.: Terahertz imaging system for medical applications and related high efficiency terahertz devices. J. Infrared 35, 118–130 (2014)

    Article  Google Scholar 

  • Poglitsch, A., Katterloher, R.O., Hoenle, R., Beeman, J., Haller, E.E., Richter, H., Groezinger, U., Haegel, N.M., Krabbe, A.: Far-infrared photoconductors for Herschel and SO-FIA. Proc. SPIE. 4855, 115–128 (2003)

    Article  ADS  Google Scholar 

  • Reichertz, L.A., Beeman, J.W., Cardozo, B.L., Jakob, G., Katterloher, R., Haegel, N.M., Haller, E.E.: Development of a GaAs based BIB detector for sub-mm wavelengths. Proc. SPIE 6275, 62751S (2006)

    Article  ADS  Google Scholar 

  • Song, Z., Zhao, Z., Zhao, H.: Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. J. Appl. Phys. 118, 043108 (2015)

    Article  ADS  Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)

    Article  ADS  Google Scholar 

  • Watanabe, K., Ueno, M., Wakakl, M., Abe, O., Murkakmi, H.: GaAs: Se and GaAs: Te photoconductive detectors in 300 μm region for astronomical observations. J. Appl. Phys. 47, 8261–8264 (2008)

    Article  Google Scholar 

  • Watanabea, K., Yamashitac, K., Katazaa, H., Kamizukab, T., Wada, T., Wakakic, M., Abed, O., Murakamia, H.: Fabrication of the GaAs based terahertz photoconductors and the photometer for Tera-GATE. SPIE 7020, 702020–7020201 (2008)

    ADS  Google Scholar 

  • Wu, P.C., Hsu, W.L., Chen, W.T., Huang, Y.W., Liao, C.Y., Liu, A.Q., Zheludev, N.I., Sun, G., Tsai, D.P.: Plasmon coupling in vertical split-ring resonator metamolecules. Scientific Reports. 5, 9726 (2015)

    Article  Google Scholar 

  • Zhang, C., Wang, B., Chen, Y., Hou, L., Pan, M., and Wang, X.: Study on the spectral response characteristics of GaAs-based Blocked-Impurity-Band Detectors. ICICM, 105–109 (2017)

  • Zhou, D., Hou, L., Xie, W., Zang, Y., Lu, B., Chen, J., Wu, P.: Practical dual-band terahertz imaging system. Appl. Opt. 56, 3148–3154 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61705201, and 61404120), Shanghai Rising-Star Program (Grant No. 17QB1403900), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2018QNRC001), Shanghai Sailing Program (Grant No. 17YF1418100), and Shanghai Youth Top-Notch Talent Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices, NUSOD’ 18.

Guest edited by Paolo Bardella, Weida Hu, Slawomir Sujecki, Stefan Schulz, Silvano Donati, Angela Traenhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, X., Tong, W. et al. The simulation on absorption properties of metamaterial/GaAs/electrode layer hybrid structure based Terahertz photoconductive detector. Opt Quant Electron 51, 118 (2019). https://doi.org/10.1007/s11082-019-1834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1834-8

Keywords

Navigation