Skip to main content
Log in

The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We apply the method of fundamental solutions (MFS) for the solution of harmonic and biharmonic problems in circular domains subject to mixed boundary conditions. In contrast to the cases when boundary conditions of the same kind are prescribed on the whole boundary, for example, only Dirichlet conditions in the harmonic case, and Dirichlet and Neumann conditions in the biharmonic case, the resulting systems are neither circulant (harmonic case) nor block circulant (biharmonic case). However, by appropriately manipulating the matrices involved in the MFS discretization, the partial circulant/block circulant structure of these matrices can be exploited when certain iterative methods of solution are used for the solution of the resulting systems. This leads to efficient fast Fourier transform (FFT) algorithms which are tested on several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J. M., Dongarra, J., Eijkhout, V., Pozo, R.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Book  Google Scholar 

  2. Berger, J.R., Karageorghis, A: Galerkin formulations of the method of fundamental solutions. Adv. Appl. Math. Mech. 5, 423–441 (2013)

    MATH  MathSciNet  Google Scholar 

  3. Bialecki, B., Fairweather, G.: Matrix decomposition algorithms for separable elliptic boundary value problems in two space dimensions. J. Comput. Appl. Math. 46, 369–386 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms. 56, 253–295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, W., Lin, J., Chen, C.S.: The method of fundamental solutions for solving exterior axisymmetric Helmholtz problems with high wave-number. Adv. Appl. Math. Mech. 5, 477–493 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Datta, B.N.: Numerical Linear Algebra and Applications, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010)

    Book  Google Scholar 

  7. Davis, P.J.: Circulant Matrices, 2nd edn. AMS Chelsea Publishing, Providence (1994)

    Google Scholar 

  8. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelhia (1997)

    Book  MATH  Google Scholar 

  9. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg, M.A. (ed.) Boundary Integral Methods: Numerical and Mathematical Aspects. Comput. Eng., vol. 1, pp. 103–176. WIT Press/Comput. Mech. Publ., Boston, 1999

  12. Greenbaum, A.: Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics, vol. 17. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  Google Scholar 

  13. Heryudono, A.R.H., Driscoll, T.A.: Radial basis function interpolation on irregular domain through conformal transplantation. J. Sci. Comput. 44, 286–300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: A matrix decomposition RBF algorithm: approximation of functions and their derivatives. Appl. Numer. Math. 57, 304–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69, 434–459 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karageorghis, A., Marin, L.: Efficient MFS algorithms for problems in thermoelasticity. J. Sci. Comput. 56, 96–121 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karageorghis, A., Smyrlis, Y.-S., Tsangaris, T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithms. 43, 123–149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kelmanson, M.A.: An integral equation method for the solution of singular slow flow problems. J. Comput. Phys. 51, 139–158 (1983)

    Article  MATH  Google Scholar 

  19. Lefeber, D.: Solving Problems with Singularities using Boundary Elements, Topics in Engineering, vol. 6. Computational Mechanics Publications, Southampton (1989)

    Google Scholar 

  20. Li, M., Chen, C.S., Karageorghis, A.: The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions. Comput. Math. Appl. 66, 2400–2424 (2013)

    Article  MathSciNet  Google Scholar 

  21. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA, Matlab

  22. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving non–symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16, 341–371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain biharmonic problems. CMES Comput. Model. Eng. Sci. 4, 535–550 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Trefethen, L.N., Bau, D III: Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  MATH  Google Scholar 

  27. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Karageorghis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karageorghis, A. The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer Algor 68, 185–211 (2015). https://doi.org/10.1007/s11075-014-9900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9900-6

Keywords

Mathematics Subject Classifications (2010)

Navigation