Skip to main content
Log in

A computational framework of gradient flows for general linear matrix equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Linear matrix equations such as the Sylvester equation, Lyapunov equation, Stein equation, and a variate of their generalizations are of significant importance in many applications. A conversion to a classical linear system \(\mathcal {A}\mathbf {x}=\mathbf {b}\) via the Kronecker product is generally regarded as the last resort because it significantly increases the size of the problem and disrespects any underlying structure. Convention Krylov subspace methods such as GMRES or CGNR might not need the vectorization explicitly, but an otherwise well established preconditioner for \(\mathcal {A}\) encounters the difficulty that it must be disassembled and redistributed over the original matrix coefficients in order to complete evade the Kronecker vectorization. Thus many other techniques for solving linear matrix equations have been developed, which are usually problem dependent and can hardly be generalized when the equation is changed. In contrast, motivated by the notion of order-4 tensor equations, this paper proposes the idea of casting any linear matrix equation under the same framework of generalized normal equation and using low-precision gradient dynamics to achieve high-precision solution. A single computational paradigm therefore serves to handle all types of linear matrix equations. The flow approach has the advantages of being straightforward for implementation, uniform in theory, versatile in application, working directly with the original sizes without Kronecker vectorization, avoiding inversion or factorization, and being easy for convergence analysis. This paper outlines the theory, exemplifies a collection of applications, suggests a simple implementation, and reports some numerical evidences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-A. Absil, R. Mahony, B. Andrews: Convergence of the iterates of descent methods for analytic cost functions. SIAM. J. Optim. 16, 531–547 (2005)

  2. P.-A. Absil, R. Mahony, R. Sepulchre: Optimization algorithms on matrix manifolds, Princeton University Press. NJ, Princeton (2008)

  3. L. Ambrosio, N. Gigli, G. Savaré: Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Basel, second ed., Birkhäuser Verlag (2008)

  4. A. C. Antoulas: Approximation of large-scale dynamical systems, vol. 6 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia. With a foreword by Jan C. Willems, PA (2005)

  5. J. K. Baksalary, R. Kala: The matrix equation A XY B=C. Linear Algebra Appl. 25, 41–43 (1979)

  6. W. Behrman: An efficient gradient flow method for unconstrained optimization. Stanford University, PhD thesis (1998)

  7. R. Bhatia, P. Rosenthal: How and why to solve the operator equation A XX B=Y. Bull. London Math. Soc. 29, 1–21 (1997)

  8. H. W. Braden: The equations A TX±X T A=B. SIAM J. Matrix Anal. Appl. 20, 295–302 (1999). electronic

  9. J. Carr: Applications of centre manifold theory, vol. 35 of Applied Mathematical Sciences. Springer-Verlag, New York (1981)

  10. R. Chill: On the Łojasiewicz-Simon gradient inequality. J.Funct. Anal. 201, 572–601 (2003)

  11. M. T. Chu: Linear algebra algorithms as dynamical systems. Acta Numerica 17, 1–86 (2008)

  12. H. Dai, P. Lancaster: Linear matrix equations from an inverse problem of vibration theory. Linear Algebra Appl. 246, 31–47 (1996)

  13. F. De Terán, F. M. Dopico, N. Guillery, D. Montealegre, N. Reyes: The solution of the equation A X+X B=0. Linear Algebra Appl. 438, 2817–2860 (2013)

  14. M. Dehghan, M. Hajarian: An efficient algorithm for solving general coupled matrix equations and its application. Math. Comput. Modelling 51, 1118–1134 (2010)

  15. F. Ding, T. Chen: On iterative solutions of general coupled matrix equations. SIAM J. Control Optim. 44, 2269–2284 (electronic). (2006)

  16. P. A. Fuhrmann: A functional approach to the Stein equation. Linear Algebra Appl. 432, 3031–3071 (2010)

  17. Z. Gajic, M. T. J. Qureshi: Lyapunov matrix equation in system stability and control, vol. 195 of Mathematics in Science and Engineering, Academic Press Inc. CA, San Diego (1995)

  18. S. R. Garcia, A. L. Shoemaker: On the matrix equation X A+A X T=0. Linear Algebra Appl. 438, 2740–2746 (2013)

  19. J. D. Gardiner, A. J. Laub, J. J. Amato, C. B. Moler: Solution of the Sylvester matrix equation A X B +C X D =E. ACM Trans. Math. Software 18, 223–231 (1992)

  20. N. J. Higham: Functions of matrices, Society for Industrial and Applied Mathematics (SIAM). Philadelphia PA, Theory and computation (2008)

  21. R. A. Horn, C. R. Johnson: Topics in matrix analysis. Cambridge University Press, Cambridge (1991)

  22. D. Y. Hu, L. Reichel: Krylov-subspace methods for the sylvester equation.

  23. K. D. Ikramov: On conditions for the unique solvability of the matrix equation A X+X T B=C. Dokl Akad. Nauk 430, 444–447 (2010)

  24. B. Kågström: A perturbation analysis of the generalized Sylvester equation (A RL B,D RL E)=(C,F). SIAM J. Matrix Anal. Appl. 15, 1045–1060 (1994)

  25. C. T. Kelley , D. E. Keyes: Convergence analysis of pseudo-transient continuation. SIAM J. Numer. Anal. 35, 508–523 (electronic). (1998)

  26. C. T. Kelley, L.-Z. Liao, L. Qi, M. T. Chu, J. P. Reese, C. Winton: Projected pseudotransient continuation. SIAM J. Numer. Anal. 46, 3071–3083 (2008)

  27. A. Klein, P. Spreij: On Stein’s equation, Vandermonde matrices and Fisher’s information matrix of time series processes. I. The autoregressive moving average process. Linear Algebra Appl. 329, 9–47 (2001)

  28. O. Koch, C. Lubich: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29, 434–454 (2007)

  29. M. Konstantinov , D.-W. Gu, V. Mehrmann, P. Petkov: Perturbation theory for matrix equations, vol. 9 of Studies in Computational Mathematics. North-Holland Publishing Co., Amsterdam (2003)

  30. P. Lancaster: Explicit solutions of linear matrix equations. SIAM Rev. 12, 544–566 (1970)

  31. L. Lerer, A. C. M. Ran: A new inertia theorem for Stein equations, inertia of invertible Hermitian block Toeplitz matrices and matrix orthogonal polynomials. Integral Equations Operator Theory 47, 339–360 (2003)

  32. S. Li, Y. Li: Nonlinearly activated neural network for solving time-varying complex sylvester equation, p 285166. IEEE Transactions on Cybernetics (2013)

  33. A.-P. Liao, Z.-Z. Bai: Least squares symmetric and skew-symmetric solutions of the matrix equation A X A T+B Y B T=C with the least norm. Math. Numer. Sin. 27, 81–95 (2005)

  34. A.-P. Liao, Z.-Z. Bai, Y. Lei: Best approximate solution of matrix equation A X B+C Y D=E, SIAM. J. Matrix Anal. Appl. 27, 675–688 (2005)

  35. A.-P. Liao, Y. Lei, X.-Y. Hu: Least-squares solution with the minimum-norm for the matrix equation A T X B+B T X T A=D and its applications. Acta Math. Appl. Sin Engl. Ser. 23, 269–280 (2007)

  36. S. Łojasiewicz: Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles (Paris, 1962), pp 87–89. Éditions du Centre National de la Recherche Scientifique, Paris (1963)

  37. S. Łojasiewicz, M.-A. Zurro: On the gradient inequality. Bull. Polish Acad. Sci. Math. 47, 143–145 (1999)

  38. C. Lubich, I. V. Oseledets: A projector-splitting integrator for dynamical low-rank approximation. BIT 54, 171–188 (2014)

  39. A. G. Mazko: Matrix equations, spectral problems and stability of dynamic systems, vol. 2 of Stability, Oscillations and Optimization of Systems. Cambridge Scientific Publishers, Cambridge (2008)

  40. C. C. K. Mikkelsen: Numerical Methods for Large Lyapunov Equation, PhD thesis, Purdue University. West Lafayette, Indianna (2009)

  41. J. Nocedal, S. J. Wright: Numerical optimization, Springer Series in Operations Research and Financial Engineering. Springer, New York, second ed. (2006)

  42. A. B. Özgüler: The equation A X B+C Y D=E over a principal ideal domain. SIAM. J. Matrix Anal. Appl. 12, 581–591 (1991)

  43. N. Parikh, S. Boyd: Proximal algorithms. Foundation and Trends in Optimization 1, 123–231 (2013)

  44. Z.-Y. Peng, Y.-X. Peng: An efficient iterative method for solving the matrix equation A X B+C Y D=E. Numer Linear Algebra Appl. 13, 473–485 (2006)

  45. M. Pierre: Quelques applications de l’inégalit´e de Lojasiewicz à des discrétisations d’EDP. SMAI (2011). URL http://smai.emath.fr/smai2011/slides/mpierre/Slides.pdf.

  46. M. Robb, M. Sadkane: A convergence analysis of GMRES and FOM methods for Sylvester equations. Numerical Algorithms 30, 71–89 (2002)

  47. W. E. Sadkane: The equations A XY B=C and A XX B=C in matrices. Proc. Amer. Math. Soc. 3, 392–396 (1952)

  48. F. C. Silva, R. Simões: On the Lyapunov and Stein equations. II. Linear Algebra Appl. 426, 305–311 (2007)

  49. V. Simocini: Computational methods for linear matrix equation, survey article, Università di Bologna. Bologna, Italy (2013). URL http://www.dm.unibo.it/simoncin/matrixeq.pdf.

  50. M. J. Todd: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

  51. P. M. Van Dooren: Structured linear algebra problems in digital signal processing, in Numerical linear algebra, digital signal processing and parallel algorithms (Leuven, 1988) vol. 70 of NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., pp 361–384. Springer, Berlin (1991)

  52. C. F. Van Loan: The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000), pp. 85–100. Vol. III. Linear algebra, Numerical analysis (2000)

  53. L. Vandenberghe, S. Boyd: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

  54. B. Vandereycken, S. Vandewalle: A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations. SIAM Journal on Matrix Analysis and Applications 31, 2553–2579 (2010)

  55. G. Xu, M. Wei, D, Zheng: On solutions of matrix equation A X B+C Y D=F. Linear Algebra Appl. 279, 93–109 (1998)

  56. J.-J. Zhang: A note on the iterative solutions of general coupled matrix equation. Appl Math. Comput. 217, 9380–9386 (2011)

  57. B. Zhou, G.-R. Duan, Z.-Y. Li: Gradient based iterative algorithm for solving coupled matrix equations. Systems Control Lett. 58, 327–333 (2009)

  58. B. Zhou, J. Lam, G.-R. Duan: Gradient-based maximal convergence rate iterative method for solving linear matrix equations. Int. J. Comput. Math. 87, 515–527 (2010)

  59. K. Ziȩtak: On a particular case of the inconsistent linear matrix equation A X+Y B=C. Linear Algebra Appl. 66, 249–258 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moody T. Chu.

Additional information

Moody T. Chu’s research was supported in part by the National Science Foundation under grants DMS-1014666 and DMS-1316779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chu, M.T. & Bo, Y. A computational framework of gradient flows for general linear matrix equations. Numer Algor 68, 121–141 (2015). https://doi.org/10.1007/s11075-014-9885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9885-1

Keywords

Mathematics Subject Classifications (2010)

Navigation