Skip to main content
Log in

A novel framework for direct multistep prediction in complex systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multistep prediction is an open challenge in many real-world systems for a long time. Despite the advantages of previous approaches, e.g., step-by-step iteration, they have some shortcomings, such as accumulated errors, high cost, and low interpretation. To this end, Gaussian process regression and delay embedding are used to create a combination framework, namely spatial–temporal mapping (STM). Delay embedding is employed to reconstruct an isomorphic dynamical structure with the original system through a single time series, which provides the fundamental architecture for multistep predictions (interpretation). Gaussian process regression is used to achieve predictions by identifying a mapping between the reconstructed dynamical structure and the original structure. This combination framework outputs multistep ahead predictions in a single step (low cost). We test the feasibility of STM for both model systems, including the 3-species ecology system, the Lorenz chaotic system, and the Rossler chaotic system, and several real-world systems, involving energy, finance, life science, and climate. STM framework outperforms traditional iterative approaches and has the potential for many other real-world systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed within this study are included in this article.

References

  1. Wang, W.X., et al.: Data based identification and prediction of nonlinear and complex dynamical systems. Phys. Rep. 644, 1–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Subrahmanian, V.S., Kumar, S.: Predicting human behavior: the next frontiers. Science 355, 489–489 (2017)

    Article  Google Scholar 

  3. Zhang, Z.C., et al.: Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies. Transp. Res. Part C 105, 297–322 (2019)

    Article  Google Scholar 

  4. Tang, Y.M., et al.: Progress in ENSO prediction and predictability study. Natl. Sci. Rev. 5, 826–839 (2018)

    Article  Google Scholar 

  5. Bao, Y.K., Xiong, T., Hu, Z.Y.: Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 129, 482–493 (2014)

    Article  Google Scholar 

  6. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS 113, 3932–3937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Article  Google Scholar 

  8. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  9. Padder, M., Ausif, A.A., Ayub, K.: Solving and analysing tumor–immune interaction model by generalized differential transformation method. Int. J. Appl. Comput. Math. 8, 1–14 (2022)

    Article  MathSciNet  Google Scholar 

  10. Ma, H.F., Leng, S.Y., Chen, L.N.: Data-based prediction and causality inference of nonlinear dynamics. Sci. China 3, 403–420 (2018)

    Article  MATH  Google Scholar 

  11. Oliver, M. et al. (2022) Unifying pairwise interactions in complex dynamics. arXiv:2201.11941.

  12. Granger, C.W.: Strategies for modelling nonlinear time-series relationships. Econ. Record 69, 233–238 (1993)

    Article  Google Scholar 

  13. Colombo, E., Pelagatti, M.: Statistical learning and exchange rate forecasting. Int. J. Forecast. 36, 1260–1289 (2020)

    Article  Google Scholar 

  14. Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive integrated moving average time series models. J. Am. Stat. Assoc. 65, 1509–1526 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, T., et al.: Time-varying pattern causality inference in global stock markets. Int. Rev. Financ. Anal. 77, 101806 (2021)

    Article  Google Scholar 

  17. Wesselbaum, D.: Time-varying volatility in the US labor market. J. Appl. Econ. 21, 197–213 (2018)

    Article  Google Scholar 

  18. Wu, T., et al.: The complex dynamics of correlations within chaotic systems. Chaos, Solitons Fractals 167, 113052 (2023)

    Article  MathSciNet  Google Scholar 

  19. Mantegna, R. N. & Stanley, H. E. (2000) An introduction to Econophysics: Correlations and complexity in finance Cambridge University Press

  20. Tang, Y., et al.: Introduction to Focus Issue: When machine learning meets complex systems: Networks, chaos and nonlinear dynamics. Chaos 30, 063151 (2020)

    Article  MathSciNet  Google Scholar 

  21. Loh, W.Y.: Classification and regression trees. WIRES 1, 14–23 (2011)

    Google Scholar 

  22. Cao, L.: Support vector machines experts for time series forecasting. Neurocomputing 51, 321–339 (2003)

    Article  Google Scholar 

  23. Gauthier, D.J., et al.: Next generation reservoir computing. Nature. Communications 12, 5564 (2021)

    Google Scholar 

  24. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  25. Ma, H.F., et al.: Predicting time series from short-term high-dimensional data. Int. J. Bifurcat. Chaos 24, 1430033 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sugihara, G.: Nonlinear forecasting for the classification of natural time series. Philosophical Transact.: Phys. Sci. Eng. 348, 477–495 (1994)

    MATH  Google Scholar 

  27. Ye, H., Sugihara, G.: Information leverage in interconnected ecosystems: overcoming the curse of dimensionality. Science 353, 922–925 (2016)

    Article  Google Scholar 

  28. Perretti, C.T., Munch, S.B., Sugihara, G.: Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data. PNAS 110, 5253–5257 (2013)

    Article  Google Scholar 

  29. Sugihara, G., et al.: Detecting causality in complex ecosystems. Science 338, 495–500 (2012)

    Article  MATH  Google Scholar 

  30. Kraemer, K.H., et al.: A unified and automated approach to attractor reconstruction. New J. Phys. 23, 033017 (2021)

    Article  MathSciNet  Google Scholar 

  31. Sagi, O., Rokach, L.: Ensemble learning: A survey. WIRES 8, e1249 (2018)

    Google Scholar 

  32. Chen, C., et al.: Predicting future dynamics from short-term time series using an anticipated learning machine. Natl. Sci. Rev. 7, 1079–1091 (2020)

    Article  Google Scholar 

  33. Sun, H., Yu, B.: Forecasting financial returns volatility: a GARCH-SVR model. Comput. Econ. 55, 451–471 (2019)

    Article  Google Scholar 

  34. Zahra, H., et al.: A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting. Chaos, Solitons Fractals 156, 111880 (2022)

    Article  MathSciNet  Google Scholar 

  35. Ma, H.F., et al.: Randomly distributed embedding making short-term high-dimensional data predictable. PNAS 43, E9994–E10002 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Scheffer, M., et al.: Anticipating critical transitions. Science 338, 344–348 (2012)

    Article  Google Scholar 

  37. Peng, X.Y., et al.: Detecting and predicting tipping points. Int. J. Bifurcat. Chaos 29, 1930022 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xin, B.G., Zhang, J.Y.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79, 1399–1409 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sprott, J.C., et al.: Coexistence and chaos in complex ecologies. Phys. Lett. A 335, 207–212 (2005)

    Article  MATH  Google Scholar 

  40. Rind, D.: Complexity and climate. Science 284, 105–107 (1999)

    Article  Google Scholar 

  41. Dafilis, M.P., Liley, D., Cadusch, P.J.: Robust chaos in a model of the electroencephalogram: implications for brain dynamics. Chaos 11, 474–478 (2001)

    Article  MATH  Google Scholar 

  42. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, H., Song, W., Zio, E.: Generalized cauchy difference iterative forecasting model for wind speed based on fractal time series. Nonlinear Dyn. 103, 759–773 (2021)

    Article  Google Scholar 

  44. Hamzaebi, C., et al.: Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst. Appl. 36, 3839–3844 (2009)

    Article  Google Scholar 

  45. Sorjamaa, A., et al.: Methodology for long-term prediction of time series. Neurocomputing 70, 2861–2869 (2007)

    Article  Google Scholar 

  46. Bontempi, G., Taieb, S.B.: Conditionally dependent strategies for multiple-step-ahead prediction in local learning. Int. J. Forecast. 27, 689–699 (2011)

    Article  Google Scholar 

  47. Cheng, C.T., et al.: A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction. J. Hydrol. 361, 118–130 (2008)

    Article  Google Scholar 

  48. Yin, C.R., Dai, Q.: A deep multivariate time series multistep forecasting network. Appl. Intell. 52, 8956–8974 (2021)

    Article  Google Scholar 

  49. Sangiorgio, M., Dercole, F.: Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos, Solitons Fractals 139, 110045 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rasmussen, C., Williams, C.: Gaussian processes for machine learning. MIT Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  51. Takens, F.: Detecting strange attractors in turbulence. Mathematics 898, 366–381 (1981)

    MathSciNet  MATH  Google Scholar 

  52. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43–50 (1997)

    Article  MATH  Google Scholar 

  53. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractor from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  54. Schack, R., Brun, T.A., Caves, C.M.: Quantum bayes rule. Phys. Rev. A 64, 014305 (2001)

    Article  Google Scholar 

  55. Sun, Y.J.: An exponential observer for the generalized Rossler chaotic system. Chaos, Solitons Fractals 40, 2457–2461 (2009)

    Article  MATH  Google Scholar 

  56. Wang, J., et al.: A multi-granularity heterogeneous combination approach to crude oil price forecasting. Energy Economics 91, 104790 (2020)

    Article  Google Scholar 

  57. Ederington, L., Guan, W., Yang, L.S.: The impact of the US employment report on exchange rates. J. Int. Money Financ. 90, 257–267 (2019)

    Article  Google Scholar 

  58. Stavroglou, S.K., et al.: Hidden interactions in financial markets. PNAS 116, 10646–10651 (2019)

    Article  Google Scholar 

  59. Cheon, S.P., et al.: Bayesian networks based rare event prediction with sensor data. Knowl.-Based Syst. 22, 336–343 (2009)

    Article  Google Scholar 

  60. Wu, T., et al.: Diverse causality inference in foreign exchange markets. Int. J. Bifurcat. Chaos 31, 2150070 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Basic Science Center Project for National Natural Science Foundation of China (No. 72088101, the Theory and Application of Resource and Environment Management in the Digital Economy Era), National Natural Science Foundation of China (Grant No.71991481, 71991485, 71991480).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng An or Xiangyun Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2100 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., An, F., Gao, X. et al. A novel framework for direct multistep prediction in complex systems. Nonlinear Dyn 111, 9289–9304 (2023). https://doi.org/10.1007/s11071-023-08360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08360-7

Keywords

Navigation