Skip to main content
Log in

Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Excitatory postsynaptic current (EPSC) is a biological signal of neurons; the propagation mechanism of subthreshold EPSC signal in neural network and the effects of background noise on the propagation of the subthreshold EPSC signal are still unclear. In this paper, considering a feed-forward neural network with five layers and an external subthreshold EPSC signal imposed on the Hodgkin–Huxley neurons of first layer, the propagation and fidelity of subthreshold EPSC signal in the feed-forward neural network are studied by using the spike timing precision and power norm. It is found that the background noise in each layer is beneficial for the propagation of subthreshold EPSC signal in feed-forward neural network; there exists an optimal background noise intensity at which the propagation speed of subthreshold EPSC signal can be enhanced, and the fidelity between system’s response and subthreshold EPSC signal is preserved. The transmission of subthreshold EPSC signal is shifted from failed propagation to succeed propagation with the increasing of synaptic weight. By regulating the background noise and the synaptic weight, the information of subthreshold EPSC signal is transferred accurately through the feed-forward neural network, both time lag and fidelity between the system’s response and subthreshold EPSC signal are promoted. These results might provide a possible underlying mechanism for enhancing the subthreshold EPSC signal propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo, D.Q., Li, C.G.: Signal propagation in feedforward neuronal networks with unreliable synapses. J. Comput. Neurosci. 30, 567–587 (2011)

    Article  MathSciNet  Google Scholar 

  2. Wang, C.J., Yang, K.L.: Correlated noise-based switches and stochastic resonance in a bistable genetic regulation system. Eur. Phys. J. B 89, 173 (2016)

    Article  Google Scholar 

  3. Wang, C.J., Yang, K.L., Du, C.Y.: Multiple cross-correlation noise induced transition in a stochastic bistable system. Physica A 470, 261–274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, C.J., Yi, M., Yang, K.L., et al.: Time delay induced transition of gene switch and stochastic resonance in a genetic transcriptional regulatory model. BMC Syst. Biol. 6, 1–16 (2012)

    Article  Google Scholar 

  5. Jia, Y.B., Gu, H.G.: Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos 25, L453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Stimberg, M., Hoch, T., Obermayer, K.: The effect of background noise on the precision of pulse packet propagation in feed-forward networks. Neurocomputing 70, 1824–1828 (2007)

    Article  Google Scholar 

  7. Lu, L.L., Jia, Y., Liu, W., Yang, L.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, Article ID 7628537 (2017)

  8. Handa, H., Sharma, B.B.: Synchronization of a set of coupled chaotic FitzHugh–Nagumo and Hindmarsh–Rose neurons with external electrical stimulation. Nonlinear Dyn. 85, 1–16 (2016)

    Article  MATH  Google Scholar 

  9. Yılmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  10. Uzuntarla, M., Ozer, M., Ileri, U., et al.: Effects of dynamic synapses on noise delayed response latency of a single neuron. Phys. Rev. E 92, 062710 (2015)

    Article  Google Scholar 

  11. Xu, Y., Jia, Y., Kirunda, J.B., Shen, J., Ge, M., Lu, L., Pei, Q.: Dynamic behaviors in coupled neurons system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, Article ID 3012743 (2018)

  12. Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Article  Google Scholar 

  13. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos 104, 435–442 (2017)

    Google Scholar 

  14. Yao, C.G., Zhan, M., Shuai, J.W., Ma, J., Kurths, J.: Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos 27, 126702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, F.Q., Wang, Y., Ma, J., Jin, W.Y., Hobiny, A., Dawson, K.A., et al.: Multi-channels coupling-induced pattern transition in a tri-layer neuronal network. Physica A 493, 54–68 (2018)

    Article  MathSciNet  Google Scholar 

  16. Guo, S.L., Ma, J., Alsaedi, A.: Suppression of chaos via control of energy flow. Pramana 90, 39 (2018)

    Article  Google Scholar 

  17. Lu, L.L., Jia, Y., Xu, Y., Ge, M.Y., Yang, L.J., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. (2018). https://doi.org/10.1007/s11431-017-9217-x

  18. Eichwald, C., Walleczek, J.: Aperiodic stochastic resonance with chaotic input signals in excitable systems. Phys. Rev. E 55, R6315–R6318 (1997)

    Article  Google Scholar 

  19. Wang, H.T., Chen, Y.: Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals. Physica A 462, 321–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Masoliver, M., Masoller, C.: Subthreshold signal encoding in coupled FitzHugh–Nagumo neurons (2017). arXiv:1711.08309

  21. Sun, X.J., Liu, Z.F.: Combined effects of time delay and noise on the ability of neuronal network to detect the subthreshold signal. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4156-7

  22. Yao, Y.G., Yang, L.J., Wang, C.J., Liu, Q., Gui, R., Xiong, J. et al.: Subthreshold periodic signal detection by bounded noise-induced resonance in the FitzHugh–Nagumo neuron. Complexity 2018, Article ID 5632650 (2018)

  23. Ge, M.Y., Jia, Y., Kirunda, J.B., et al.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)

    Article  Google Scholar 

  24. Arredondo, L.T., Perez, C.A.: Spatially coincident vibrotactile noise improves subthreshold stimulus detection. PLoS One 12, e0186932 (2017)

    Article  Google Scholar 

  25. González-Rueda, A., Pedrosa, V., Feord, R.C., Clopath, C., Paulsen, O.: Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron 97, 1–9 (2018)

    Article  Google Scholar 

  26. Qin, Y.M., Wang, J., Men, C., et al.: Stochastic resonance in feedforward acupuncture networks. Commun. Nonlinear Sci. 19, 3660–3670 (2014)

    Article  MathSciNet  Google Scholar 

  27. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529 (1999)

    Article  Google Scholar 

  28. Moldakarimov, S., Bazhenov, M., Sejnowski, T.J.: Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proc. Natl. Acad. Sci. USA 112, 2545–2550 (2015)

    Article  Google Scholar 

  29. Yilmaz, E., Baysal, V., Perc, M., et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016)

    Article  Google Scholar 

  30. Yilmaz, E., Baysal, V., Ozer, M., et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A 444, 538–546 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Baysal, V., Yılmaz, E., Ozer, M.: Blocking of weak signal propagation via autaptic transmission in scale-free networks. JEEE 17, 3081–3085 (2017)

    Google Scholar 

  32. Masuda, N., Aihara, K.: Duality of rate coding and temporal coding in multilayered feedforward networks. Neural. Comput. 15, 103–125 (2003)

    Article  MATH  Google Scholar 

  33. Ozer, M., Perc, M., Uzuntarla, M., Koklukaya, E.: Weak signal propagation through noisy feedforward neuronal networks. Neuroreport 21, 338–343 (2010)

    Article  Google Scholar 

  34. Wang, J., Han, R., Wei, X., Qin, Y., Yu, H., Deng, B.: Weak signal detection and propagation in diluted feed-forward neural network with recurrent excitation and inhibition. Int. J. Mod. Phys. B. 30, 1550253 (2016)

    Article  MathSciNet  Google Scholar 

  35. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A 389, 3299–3306 (2010)

    Article  Google Scholar 

  36. Sun, X.J., Perc, M., Kurths, J.: Effects of partial time delays on phase synchronization in Watts–Strogatz small-world neuronal networks. Chaos 27, 053113 (2017)

    Article  MathSciNet  Google Scholar 

  37. Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85, 878–896 (2012)

    Google Scholar 

  38. Wang, Q.Y., Perc, M., Duan, Z.C., Chen, G.R.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80, 026206 (2009)

    Article  Google Scholar 

  39. Pei, X., Wilkens, L., Moss, F.: Noise-mediated spike timing precision from aperiodic stimuli in an array of Hodgekin–Huxley-type neurons. Phys. Rev. Lett. 77, 4679 (1996)

    Article  Google Scholar 

  40. Tanabe, S., Sato, S., Pakdaman, K.: Response of an ensemble of noisy neuron models to a single input. Phys. Rev. E 60, 7235 (1999)

    Article  Google Scholar 

  41. Whittington, M.A., Jefferys, J.G.R.: Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc. Natl. Acad. Sci. USA 94, 12198–12203 (1997)

    Article  Google Scholar 

  42. Xue, M., Atallah, B.V., Scanziani, M.: Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014)

    Article  Google Scholar 

  43. Clark, K.A., Collingridge, G.L.: Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J. Physiol. 482, 39–52 (1995)

    Article  Google Scholar 

  44. Forsythe, I.D., Westbrook, G.L.: Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurones. J. Physiol. 396, 515–533 (1988)

    Article  Google Scholar 

  45. Sah, P., Hestrin, S., Nicoll, R.A.: Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J. Physiol. 430, 605–616 (1990)

    Article  Google Scholar 

  46. Smith, A.J., Owens, S., Forsythe, I.D.: Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol. 529, 681–98 (2010)

    Article  Google Scholar 

  47. Yang, L.J., Jia, Y., Yi, M.: The effects of electrical coupling on the temporal coding of neural signal in noisy Hodgkin–Huxley neuron ensemble. ICNC 2, 819–823 (2010)

    Google Scholar 

  48. Yi, M., Yang, L.J.: Propagation of firing rate by synchronization and coherence of firing pattern in a feed-forward multilayer neural network. Phys. Rev. E 81, 061924 (2010)

    Article  Google Scholar 

  49. Yu, Y.G., Liu, F., Wang, J., et al.: Spike timing precision for a neuronal array with periodic signal. Phys. Lett. A 282, 23–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Parmananda, P., Santos, G.J.Escalera, Rivera, M., Showalter, K.: Stochastic resonance of electrochemical aperiodic spike trains. Phys. Rev. E 71, 031110 (2005)

    Article  Google Scholar 

  51. Xu, Y., Jia, Y., Ge, M.Y., et al.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Article  Google Scholar 

  52. Gautrais, J., Thorpe, S.: Rate coding versus temporal order coding: a theoretical approach. Biosystems 48, 57–65 (1998)

    Article  Google Scholar 

  53. Wang, S.T., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)

    Article  Google Scholar 

  54. Shimokawa, T., Rogel, A., Pakdaman, K., Sato, S.: Stochastic resonance and spike-timing precision in an ensemble of leaky integrate and fire neuron models. Phys. Rev. E 59, 3461–3470 (1999)

    Article  Google Scholar 

  55. Xue, M.S., Atallah, B.V., Scanziani, M.: Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos.11775091, 11474117, and 11605014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Jia, Y., Kirunda, J.B. et al. Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn 95, 1673–1686 (2019). https://doi.org/10.1007/s11071-018-4652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4652-9

Keywords

Navigation