Skip to main content
Log in

Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces that the nonlinear Poisson–Boltzmann equation for semiconductor devices describing potential distribution in a double-gate metal oxide semiconductor field effect transistor (DG-MOSFET) is exactly solvable. The DG-MOSFET shows one of the most advanced device structures in semiconductor technology and is a primary focus of modeling efforts in the semiconductor industry. Lie symmetry properties of this model is investigated in order to extract some exact solutions. The reproducing kernel Hilbert space method and group preserving scheme also have been applied to the nonlinear equation. Numerical results show that the present methods are very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. \(\mathcal {A}\) is an element of the Lie algebra so(2, 1) of the proper orthochronous Lorentz group \(SO_0(2, 1)\).

References

  1. Abbasbandy, S., Azarnavid, B.: Some error estimates for the reproducing kernel Hilbert spaces method. J. Comput. Appl. Math. 296, 789–797 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasbandy, S., Hashemi, M.S.: Group preserving scheme for the cauchy problem of the laplace equation. Eng. Anal. Bound. Elem 35, 1003–1009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akgül, A.: New reproducing kernel functions. Math. Probl. Eng., 10 (2015). Art. ID 158134

  4. Akgül, A., Inc, M., Karatas, E., Baleanu, D.: Numerical solutions of fractional differential equations of Lane–Emden type by an accurate technique. Adv. Differ. Equ. 2015(12), 220 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dynamics 84(3), 1553–1567 (2016)

    Article  MathSciNet  Google Scholar 

  7. Biswas, A., Kara, Abdul H., Moraru, L., Bokhari, A.H., Zaman, F.D.: Conservation laws of coupled Klein–Gordon equations with cubic and power law nonlinearities. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 15(2), 123–129 (2014)

    MathSciNet  Google Scholar 

  8. Biswas, A., Mirzazadeh, M., Eslami, M.: Soliton solution of generalized chiral nonlinear Schrödinger’s equation with time-dependent coefficients. Acta Phys. Pol. B 45(4), 849–866 (2014)

    Article  Google Scholar 

  9. Biswas, A., Song, M., Triki, H., Kara, A.H., Ahmed, B.S., Strong, A., Hama, A.: Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion. Appl. Math. Inf. Sci. 8(3), 949–957 (2014)

    Article  MathSciNet  Google Scholar 

  10. Biswas, A., Song, M., Zerrad, E.: Bifurcation analysis and implicit solution of Klein–Gordon equation with dual-power law nonlinearity in relativistic quantum mechanics. Int. J. Nonlinear Sci. Numer. Simul. 14(5), 317–322 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cao, J., Song, M., Biswas, A.: Topological solitons and bifurcation analysis of the PHI-four equation. Bull. Malays. Math. Sci. Soc. (2) 37(4), 1209–1219 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Chang, C.-W., Liu, Chein-Shan: A backward group preserving scheme for multi-dimensional backward heat conduction problems. CMES Comput. Model. Eng. Sci. 59(3), 239–274 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Chang, C.-W., Liu, C.-S.: The backward group preserving scheme for multi-dimensional nonhomogeneous and nonlinear backward wave problems. Appl. Math. Model. 38(15–16), 4027–4048 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.-W., Liu, C.-S., Chang, J.-R.: Applications of the modified Trefftz method for the Laplace equation. Eng. Anal. Bound. Elem. 33(2), 137–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui, M., Lin, Yingzhen: Nonlinear numerical analysis in the reproducing kernel space. Nova Science Publishers Inc., New York (2009)

    MATH  Google Scholar 

  16. Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dynamics 84(2), 669–676 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geng, F., Cui, M., Zhang, Bo: Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods. Nonlinear Anal. Real World Appl. 11(2), 637–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hashemi, M.S.: Constructing a new geometric numerical integration method to the nonlinear heat transfer equations. Commun. Nonlinear Sci. Numer. Simul. 22(1), 990–1001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hashemi, M.S., Baleanu, D.: Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. J. Comput. Phys. 316, 10–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashemi, M.S., Baleanu, D., Parto-Haghighi, M.: A lie group approach to solve the fractional poisson equation. Rom. J. Phys. 60, 1289–1297 (2015)

    Google Scholar 

  21. Hashemi, M.S., Haji-Badali, A., Vafadar, P.: Group invariant solutions and conservation laws of the fornberg-whitham equation. Z. Naturforsch. A 69(8–9), 489–496 (2014)

    Google Scholar 

  22. Hashemi, M.S., Nucci, M.C., Abbasbandy, S.: Group analysis of the modified generalized vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18, 867–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Inc, M., Akgül, A., Geng, Fazhan: Reproducing kernel Hilbert space method for solving Bratu’s problem. Bull. Malays. Math. Sci. Soc. 38(1), 271–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Inc, M., Akgül, A., Kılıçman, A.: Numerical solutions of the second-order one-dimensional telegraph equation based on reproducing kernel Hilbert space method. Abstr. Appl. Anal., 13, (2013). Art. ID 768963

  25. Krishnan, E.V., Ghabshi, M.A., Mirzazadeh, M., Bhrawy, A.H., Biswas, A., Belic, M.: Optical solitons for quadratic law nonlinearity with five integration schemes. J. Comput. Theor. Nanosci. 12(11), 4809–4821 (2015)

    Google Scholar 

  26. Lee, H.-C., Chen, C.-K., Hung, Chen-I: A modified group-preserving scheme for solving the initial value problems of stiff ordinary differential equations. Appl. Math. Comput. 133(2–3), 445–459 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Lee, H.-C., Liu, Chein-Shan: The fourth-order group preserving methods for the integrations of ordinary differential equations. CMES Comput. Model. Eng. Sci. 41(1), 1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shijun, L.: Beyond Perturbation, Volume 2 of CRC Series: Modern Mechanics and Mathematics. Introduction to the homotopy analysis method. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  29. Liu, C.-S., Hong, H.-K., Liou, D.-Y.: Two-dimensional friction oscillator: group-preserving scheme and handy formulae. J. Sound Vib. 266(1), 49–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Chein-Shan: Cone of non-linear dynamical system and group preserving schemes. Int. J. Non-Linear Mech. 36(7), 1047–1068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Chein-Shan: Two-dimensional bilinear oscillator: group-preserving scheme and steady-state motion under harmonic loading. Int. J. Non-Linear Mech. 38(10), 1581–1602 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Chein-Shan: Nonstandard group-preserving schemes for very stiff ordinary differential equations. CMES Comput. Model. Eng. Sci. 9(3), 255–272 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Liu, C.-S., Chang, Chih-Wen: A novel mixed group preserving scheme for the inverse Cauchy problem of elliptic equations in annular domains. Eng. Anal. Bound. Elem. 36(2), 211–219 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, C.-S., Chang, C.-W., Chang, J.-R.: The backward group preserving scheme for 1D backward in time advection-dispersion equation. Numer. Methods Partial Differ. Equ. 26(1), 61–80 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, C.-S., Ku, Y.-L.: A combination of group preserving scheme and Runge-Kutta method for the integration of Landau-Lifshitz equation. CMES Comput. Model. Eng. Sci. 9(2), 151–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mirzazadeh, M.: Analytical study of solitons to nonlinear time fractional parabolic equations. Nonlinear Dynamics 85(4), 2569–2576 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mirzazadeh, M., Biswas, A.: Optical solitons with spatio-temporal dispersion by first integral approach and functional variable method. Optik-Int. J. Light Electron Opt. 125(19), 5467–5475 (2014)

    Article  Google Scholar 

  38. Mirzazadeh, M., Eslami, M., Bhrawy, A.H., Biswas, A.: Integration of complex-valued kleingordon equation in\( phi\)-4 field theory. Rom. J. Phys 60(3–4), 293 (2015)

  39. Morris, R.M., Kara, A.H.: Biswas, Anjan: An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws. Collect. Math. 67(1), 55–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nassar, C.J., Revelli, J.F., Bowman, R.J.: Application of the homotopy analysis method to the Poisson–Boltzmann equation for semiconductor devices. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2501–2512 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shivanian, E., Abbasbandy, S., Alhuthali, M.S.: Exact analytical solution to the Poisson–Boltzmann equation for semiconductor devices. Eur. Phys. J. Plus 129, 104 (2014)

    Article  Google Scholar 

  42. Song, M., Biswas, Anjan: Topological defects and bifurcation analysis of the DS equation with power law nonlinearity. Appl. Math. Inf. Sci. 9(4), 1719–1724 (2015)

    MathSciNet  Google Scholar 

  43. Üreyen, A.E.: An estimate of the oscillation of harmonic reproducing kernels with applications. J. Math. Anal. Appl. 434(1), 538–553 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, G.-W., Xu, T.Z., Zedan, H.A., Abazari, R., Triki, H., Biswas, A.: Solitary waves, shock waves and other solutions to Nizhniki–Novikov–Veselov equation. Appl. Comput. Math. 14(3), 260–283 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Wang, G., Kara, A.H., Fakhar, K., Vega-Guzman, Jose, Biswas, Anjan: Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation. Chaos Solitons Fractals 86, 8–15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xie, D., Jiang, Yi: A nonlocal modified Poisson–Boltzmann equation and finite element solver for computing electrostatics of biomolecules. J. Comput. Phys. 322, 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, M.Q., Lin, Y.-Z.: Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett. 52, 156–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, Anjan: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26(2), 204–210 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akgül.

Ethics declarations

Conflict of interests

The authors declare that they do not have any competing or conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgül, A., Inc, M. & Hashemi, M.S. Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices. Nonlinear Dyn 88, 2817–2829 (2017). https://doi.org/10.1007/s11071-017-3414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3414-4

Keywords

Mathematics Subject Classification

Navigation