Skip to main content

Advertisement

Log in

Glucagon-like Peptide-1 (GLP-1) Diminishes Neuronal Degeneration and Death Caused by NGF Deprivation by Suppressing Bim Induction

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone most intensively studied for its actions on insulin secreting β-cells. GLP-1 and its receptor are also found in brain and accumulating evidence indicates that GLP-1 has neuroprotective actions. Here, we investigated whether GLP-1 protects neuronal cells from death evoked by nerve growth factor (NGF) withdrawal. Compromised trophic factor signaling may underlie neurodegenerative diseases ranging from Alzheimer disease to diabetic neuropathies. We report that GLP-1 provides sustained protection of cultured neuronal PC12 cells and sympathetic neurons from degeneration and death caused by NGF deprivation. Past work shows that NGF deprivation induces the pro-apoptotic protein Bim which contributes to neuron death. Here, we find that GLP-1 suppresses Bim induction promoted by NGF deprivation. Thus, GLP-1 may protect neurons, at least in part, by suppressing Bim induction. Our findings support the idea that drugs that mimic or elevate GLP-1 represent potential therapeutics for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705

    Article  PubMed  CAS  Google Scholar 

  2. Nauck MA, Meier JJ (2005) Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regul Pept 128:135–148

    Article  PubMed  CAS  Google Scholar 

  3. Satoh F, Beak SA, Small CJ et al (2000) Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase. Endocrinology 141:1301–1309

    Article  PubMed  CAS  Google Scholar 

  4. Han VK, Hynes MA, Jin C et al (1986) Cellular localization of proglucagon/glucagon-like peptide I messenger RNAs in rat brain. J Neurosci Res 16:97–107

    Article  PubMed  CAS  Google Scholar 

  5. Goke R, Larsen PJ, Mikkelsen JD et al (1995) Identification of specific binding sites for glucagon-like peptide-1 on the posterior lobe of the rat pituitary. Neuroendocrinology 62:130–134

    Article  PubMed  CAS  Google Scholar 

  6. Jin SL, Han VK, Simmons JG et al (1988) Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J Comp Neurol 271:519–532

    Article  PubMed  CAS  Google Scholar 

  7. Larsen PJ, Tang-Christensen M, Jessop DS (1997) Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138:4445–4455

    Article  PubMed  CAS  Google Scholar 

  8. Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403:261–280

    Article  PubMed  CAS  Google Scholar 

  9. Shughrue PJ, Lane MV, Merchenthaler I (1996) Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology 137:5159–5162

    Article  PubMed  CAS  Google Scholar 

  10. Buteau J, Roduit R, Susini S et al (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42:856–864

    Article  PubMed  CAS  Google Scholar 

  11. Buteau J, Foisy S, Rhodes CJ et al (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 50:2237–2243

    Article  PubMed  CAS  Google Scholar 

  12. Buteau J, Foisy S, Joly E et al (2003) Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 52:124–132

    Article  PubMed  CAS  Google Scholar 

  13. Farilla L, Hui H, Bertolotto C et al (2002) Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143:4397–4408

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Hansotia T, Yusta B et al (2003) Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 278:471–478

    Article  PubMed  CAS  Google Scholar 

  15. Buteau J, El-Assaad W, Rhodes CJ et al (2004) Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47:806–815

    Article  PubMed  CAS  Google Scholar 

  16. Trumper K, Trumper A, Trusheim H et al (2000) Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann N Y Acad Sci 921:242–250

    Article  PubMed  CAS  Google Scholar 

  17. Hui H, Nourparvar A, Zhao X et al (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144:1444–1455

    Article  PubMed  CAS  Google Scholar 

  18. Wang Q, Li L, Xu E et al (2004) Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 47:478–487

    Article  PubMed  CAS  Google Scholar 

  19. Perry T, Haughey NJ, Mattson MP et al (2002) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther 302:881–888

    Article  PubMed  CAS  Google Scholar 

  20. Perry T, Lahiri DK, Sambamurti K et al (2003) Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 72:603–612

    Article  PubMed  CAS  Google Scholar 

  21. Perry T, Holloway HW, Weerasuriya A et al (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203:293–301

    Article  PubMed  CAS  Google Scholar 

  22. During MJ, Cao L, Zuzga DS et al (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9:1173–1179

    Article  PubMed  CAS  Google Scholar 

  23. Perry T, Lahiri DK, Chen D et al (2002) A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 300:958–966

    Article  PubMed  CAS  Google Scholar 

  24. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  PubMed  CAS  Google Scholar 

  25. Spires TL, Hyman BT (2004) Neuronal structure is altered by amyloid plaques. Rev Neurosci 15:267–278

    PubMed  Google Scholar 

  26. Pittenger G, Vinik A (2003) Nerve growth factor and diabetic neuropathy. Exp Diabesity Res 4:271–285

    PubMed  Google Scholar 

  27. Williams BJ, Eriksdotter-Jonhagen M, Granholm AC (2006) Nerve growth factor in treatment and pathogenesis of Alzheimer’s disease. Prog Neurobiol 80:114–128

    Article  PubMed  CAS  Google Scholar 

  28. Greig NH, Mattson MP, Perry T et al (2004) New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-alpha inhibitors, and GLP-1 receptor agonists. Ann N Y Acad Sci 1035:290–315

    Article  PubMed  CAS  Google Scholar 

  29. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625

    Article  PubMed  CAS  Google Scholar 

  30. Greene LA, Liu DX, Troy CM et al (2007) Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim Biophys Acta 1772:392–401

    PubMed  CAS  Google Scholar 

  31. Putcha GV, Moulder KL, Golden JP et al (2001) Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29:615–628

    Article  PubMed  CAS  Google Scholar 

  32. Whitfield J, Neame SJ, Paquet L et al (2001) Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29:629–643

    Article  PubMed  CAS  Google Scholar 

  33. Linseman DA, Phelps RA, Bouchard RJ et al (2002) Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci 22:9287–9297

    PubMed  CAS  Google Scholar 

  34. Biswas SC, Greene LA (2002) Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation. J Biol Chem 277:49511–49516

    Article  PubMed  CAS  Google Scholar 

  35. Biswas SC, Shi Y, Vonsattel JP et al (2007) Bim is elevated in Alzheimer’s disease neurons and is required for beta-amyloid-induced neuronal apoptosis. J Neurosci 27:893–900

    Article  PubMed  CAS  Google Scholar 

  36. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  37. Park DS, Morris EJ, Stefanis L et al (1998) Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J Neurosci 18:830–840

    PubMed  CAS  Google Scholar 

  38. Rukenstein A, Rydel RE, Greene LA (1991) Multiple agents rescue PC12 cells from serum-free cell death by translation- and transcription-independent mechanisms. J Neurosci 11:2552–2563

    PubMed  CAS  Google Scholar 

  39. Xu Z, Maroney AC, Dobrzanski P et al (2001) The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol 21:4713–4724

    Article  PubMed  CAS  Google Scholar 

  40. Ham J, Eilers A, Whitfield J et al (2000) c-Jun and the transcriptional control of neuronal apoptosis. Biochem Pharmacol 60:1015–1021

    Article  PubMed  CAS  Google Scholar 

  41. Montrose-Rafizadeh C, Avdonin P, Garant MJ et al (1999) Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 140:1132–1140

    Article  PubMed  CAS  Google Scholar 

  42. Kang G, Chepurny OG, Holz GG (2001) cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J Physiol 536:375–385

    Article  PubMed  CAS  Google Scholar 

  43. Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622

    Article  PubMed  CAS  Google Scholar 

  44. Buteau J, Spatz ML, Accili D (2006) Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass. Diabetes 55:1190–1196

    Article  PubMed  CAS  Google Scholar 

  45. Friedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Exp Cell Res 253:131–142

    Article  PubMed  CAS  Google Scholar 

  46. Putcha GV, Deshmukh M, Johnson EM Jr (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19:7476–7485

    PubMed  CAS  Google Scholar 

  47. Biswas SC, Liu DX, Greene LA (2005) Bim is a direct target of a neuronal E2F-dependent apoptotic pathway. J Neurosci 25:8349–8358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yijie Shi for excellent technical assistance. We also acknowledge the aid of Dr. Dominic Accili. Supported in part by grants from the NIH-NINDS and Parkinson’s Disease Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas C. Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S.C., Buteau, J. & Greene, L.A. Glucagon-like Peptide-1 (GLP-1) Diminishes Neuronal Degeneration and Death Caused by NGF Deprivation by Suppressing Bim Induction. Neurochem Res 33, 1845–1851 (2008). https://doi.org/10.1007/s11064-008-9646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9646-4

Keywords

Navigation