Skip to main content
Log in

Propofol Resistance of Functional Domains with Orientation and Direction Sensitivity of the Primary Visual Cortex in Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A method consisting of optical mapping of the intrinsic signal was used to study the activity of functional domains of the primary visual cortex at the population level in response to changes in the stimulus situation. Transient administration of propofol on the background of stable anesthesia allowed determination of the extent to which different functional domains of the cortex are stable to the systemic action of pharmacological agents. This substance was selected for the experiments because published data have demonstrated its affinity for GABAA receptors. Experiments were performed on seven adult clinically healthy cats. Analysis of the experimental data identified statistically significant differences between the responses of direction and orientation columns: signals in orientation domains were 1.6 times greater than responses in modules with directional selectivity. Analysis of changes in the structure of optical maps (i.e., the characteristic patterns of the distribution of functional columns in areas of the visual cortex) showed decreases in the level of correlation between the regions of interest by 60% for direction maps and 40% for orientation maps. Orientation columns were more stable to propofol. Additional analysis addressed the stability of the encoding of defined orientations in the cortex, which showed that the functional elements of the cortex with the greatest stability were those detecting near-vertical orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chapman, B. and Bonhoeffer, T., “Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17,” Proc. Natl. Acad. Sci. USA, 95, No. 5, 2609–14 (1998).

    Article  CAS  Google Scholar 

  • Chapman, B., Zahs, K. R., and Stryker, M. P., “Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex,” J. Neurosci., 11, No. 5, 1347–58 (1991).

    Article  CAS  Google Scholar 

  • Coppola, D. M., Purves, H. R., McCoy, A. N., and Purves, D., “The distribution of oriented contours in the real world,” Proc. Natl. Acad. Sci. USA, 95, 4002–4006 (1998).

    Article  CAS  Google Scholar 

  • Ferster, D., Chung, S., and Wheat, H., “Orientation selectivity of thalamic input to simple cells of cat visual cortex,” Nature, 380, No. 6571, 249–52 (1996).

    Article  CAS  Google Scholar 

  • Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R., “Optical imaging of neuronal activity,” Physiol. Rev., 68, No. 4, 1285–1366 (1988).

    Article  CAS  Google Scholar 

  • Hillier, D., Fiscella, M., Drinnenberg, A., et al., “Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex,” Nat. Neurosci., 20, No. 7, 960–968 (2017).

    Article  CAS  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., “Receptive fi elds, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., 160, 106–54 (1962).

    Article  CAS  Google Scholar 

  • Ivanov, R. S., Bondar, I. V., Saltykov, K. A., and Shevelev, I. A., “The area of zones of optical activation in cortical fi eld 17 of the cat brain on presentation of grids in different orientations,” Zh. Vyssh. Nerv. Deyat., 4, 516–522 (2006).

    Google Scholar 

  • Katzner, S., Busse, L., and Carandini, M., “GABAa inhibition controls response gain in visual cortex,” J. Neurosci., 31, No. 16, 5931–41 (2011).

    Article  CAS  Google Scholar 

  • Kelly, S. T., Kremkow, J., Jin, J., et al., “The role of thalamic population synchrony in the emergence of cortical feature selectivity,” PLoS Comput. Biol., 10, No. 1, e1003418 (2014).

  • Kuleshova, E. P., “Optogenetics – new potentials for electrophysiology,” Zh. Vyssh. Nerv. Deyat., 67, No. 5, 18–31 (2017).

    Google Scholar 

  • Li, B., Peterson, M. R., and Freeman, R. D., “Oblique effect: a neural basis in the visual cortex,” J. Neurophysiol., 90, No. 1, 204–17 (2003).

    Article  Google Scholar 

  • Lien, A. D. and Scanziani, M., “Tuned thalamic excitation is amplified by visual cortical circuits,” Nat. Neurosci., 16, No. 9, 1315–23 (2013).

    Article  CAS  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., et al., “Neurophysiological investigation of the basis of the fMRI signal,” Nature, 412, No. 6843, 150–7 (2001).

    Article  CAS  Google Scholar 

  • Lyamzin, D. R., Bondar, I. V., and Ivanov, R. S., “Processing of functional maps of the visual cortex of the brain obtained using intrinsic optical signals,” Ros. Fiziol. Zh., 9, No. 4, 335–346 (2009).

    Google Scholar 

  • Moore, C. I., Carlen, M., Knoblich, U., and Cardin, J. A., “Neocortical interneurons: from diversity, strength,” Cell, 142, No. 2, 189–93 (2010).

    Article  Google Scholar 

  • Nelson, S., Toth, L., Sheth, B., and Sur, M., “Orientation selectivity of cortical neurons during intracellular blockade of inhibition,” Science, 265, No. 5173, 774–7 (1994).

    Article  CAS  Google Scholar 

  • Priebe, N. J., “Mechanisms of orientation selectivity in the primary visual cortex,” Annu. Rev. Vis. Sci., 2, 85–107 (2016).

    Article  Google Scholar 

  • Shen, W., Liang, Z., and Shou, T., “Weakened feedback abolishes neural oblique effect evoked by pseudo-natural visual stimuli in area 17 of the cat,” Neurosci. Lett., 437, No. 1, 65–70 (2008).

    Article  CAS  Google Scholar 

  • Stanley, G. B., Jin, J., Wang, Y., et al., “Visual orientation and directional selectivity through thalamic synchrony,” J. Neurosci., 32, No. 26, 9073–88 (2012).

    Article  CAS  Google Scholar 

  • Vanni, M. P., Provost, J., Casanova, C., and Lesage, F., “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage, 49, No. 2, 1416–1431 (2010).

    Article  CAS  Google Scholar 

  • Vidyasagar, T. R., Pei, X., and Volgushev, M., “Multiple mechanisms underlying the orientation selectivity of visual cortical neurones,” Trends Neurosci., 19, No. 7, 272–7 (1996).

    Article  CAS  Google Scholar 

  • Volgushev, M., Vidyasagar, T. R., and Pei, X., “A linear model fails to predict orientation selectivity of cells in the cat visual cortex,” J. Physiol., 1, No. 3, 597–606 (1996).

    Article  Google Scholar 

  • Yip, G. M., Chen, Z. W., Edge, C. J., et al., “A propofol binding site on mammalian GABAA receptors identified by photolabeling,” Nat. Chem. Biol., 9, No. 11, 715–20 (2013).

    Article  CAS  Google Scholar 

  • Zepeda, A., Arias, C., and Sengpiel, F., “Optical imaging of intrinsic signals recent developments in the methodology and its applications,” J. Neurosci. Meth., 136, No. 1, 1–21 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bondar.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 69, No. 2, pp. 218–229, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugrova, V.S., Bondar, I.V. Propofol Resistance of Functional Domains with Orientation and Direction Sensitivity of the Primary Visual Cortex in Rats. Neurosci Behav Physi 50, 327–334 (2020). https://doi.org/10.1007/s11055-020-00904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-00904-3

Keywords

Navigation