Skip to main content
Log in

An efficient dual prediction–based reversible data hiding and reduced code method for AMBTC

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

A Correction to this article was published on 08 October 2021

This article has been updated

Abstract

Due to the popularity of smartphones, laptops and wireless communication technologies, compressed images have become widely used for such applications, because a smaller storage space is needed. Protecting the security of information transmission over the Internet while reducing file size (also called the size of the final coding stream) has become a critical issue. Three related works have proposed using the reversible data hiding (RDH) method on AMBTC-compressed images to reduce the final stego-coding stream. However, these approaches still have room for improvement. To further optimize the performance of the related works, in this paper, we present an efficient dual prediction–based reversible data hiding and reduced code method for AMBTC-compressed images that uses three significant techniques: the dual prediction strategy (DP), the reversible standardized parameters (RSP) and the improved error division technique (IED). We can thus embed more secret data while effectively reducing the length of the final coding stream. Experimental results show that the proposed method has both the lowest true bitrate and the highest embedding efficiency in broader usage scenarios when compared to other related methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(3.4):313–336

    Article  Google Scholar 

  2. BOSS Web page. [Online]. Available: http://agents.fel.cvut.cz/boss/index.php?mode=VIEW&tmpl=materials. [Accessed: 22-Jan-2019].

  3. Chang C-C, Lin C-C, Tseng C-S, Tai W-L (2007) Reversible hiding in DCT-based compressed images. Inf Sci 177(13):2768–2786

    Article  Google Scholar 

  4. Chang C-C, Nguyen TS, Lin C-C (2015) A reversible compression code hiding using SOC and SMVQ indices. Inf Sci 300:85–99

    Article  Google Scholar 

  5. Chang C-C, Nguyen T-S, Lin C-C (2016) A new distortion-free data embedding scheme for high-dynamic range images. Multimed Tools Appl 75(1):145–163

    Article  Google Scholar 

  6. Chang C-C, Chen T-S, Wang Y-K, Liu Y (2018) A reversible data hiding scheme based on absolute moment block truncation coding compression using exclusive OR operator. Multimed Tools Appl 77(7):9039–9053

    Article  Google Scholar 

  7. Chen Y-Y, Hsia C-H, Jhong S-Y, Lin H-J (2018) Data hiding method for AMBTC compressed images. J Ambient Intell Humaniz Comput:1–9

  8. Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensics Secur 8(1):111–120

    Article  Google Scholar 

  9. Delp E, Mitchell O (1979) Image compression using block truncation coding. IEEE Trans Commun 27(9):1335–1342

    Article  Google Scholar 

  10. Farah MB, Farah A, Farah T (2019) An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dynamics:1–24

  11. Farah MB, Guesmi R, Kachouri A, Samet M (2020) A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt Laser Technol 121:105777

    Article  Google Scholar 

  12. Goldwasser S, Micali S, Rivest RL (1988) A digital signature scheme secure against adaptive chosen-message attacks. SIAM J Comput 17(2):281–308

    Article  MathSciNet  Google Scholar 

  13. Hong W, Chen T-S, Shiu C-W (2008) Lossless steganography for AMBTC-compressed images, in 2008 Congress on Image and Signal Processing, vol. 2, pp. 13–17.

  14. Hong W, Chen T-S, Shiu C-W (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  15. Hong W, Ma Y-B, Wu H-C, Chen T-S (2017) An efficient reversible data hiding method for AMBTC compressed images. Multimed Tools Appl 76(4):5441–5460

    Article  Google Scholar 

  16. Hong W, Zhou X, Weng S (2018) Joint adaptive coding and reversible data hiding for AMBTC compressed images. Symmetry 10(7):254

    Article  Google Scholar 

  17. Huynh N-T, Bharanitharan K, Chang C-C, Liu Y (2018) Minima-maxima preserving data hiding algorithm for absolute moment block truncation coding compressed images. Multimed Tools Appl 77(5):5767–5783

    Article  Google Scholar 

  18. Johnson NF, Jajodia S (1998) Exploring steganography: Seeing the unseen. Computer 31(2)

  19. Kim T (1992) Side match and overlap match vector quantizers for images. IEEE Trans Image Process 1(2):170–185

    Article  Google Scholar 

  20. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo H-G (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensics Secur 3(3):456–465

    Article  Google Scholar 

  21. Kim C, Shin D, Leng L, Yang C-N (2018) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real-Time Image Process 14(1):101–114

    Article  Google Scholar 

  22. Lema M, Mitchell O (1984) Absolute moment block truncation coding and its application to color images. IEEE Trans Commun 32(10):1148–1157

    Article  Google Scholar 

  23. Lin C-C, Yang S-P, Hsueh N-L (2008) Lossless data hiding based on difference expansion without a location map, in Image and Signal Processing, CISP’08. Congress on,, vol. 2, pp. 8–12.

  24. Lin C-C, Liu X-L, Tai W-L, Yuan S-M (2015) A novel reversible data hiding scheme based on AMBTC compression technique. Multimed Tools Appl 74(11):3823–3842

    Article  Google Scholar 

  25. Liu X-L, Chang C-C, Lin C-C, Yuan S-M (2016) A high-payload, reversible data hiding scheme based on histogram modification in JPEG bitstream. Imaging Sci J 64(7):364–373

    Article  Google Scholar 

  26. Lou D-C, Hu M-C, Liu J-L (2009) Multiple layer data hiding scheme for medical images. Comput Stand Interfaces 31(2):329–335

    Article  Google Scholar 

  27. Malik A, Sikka G, Verma HK (2018) An AMBTC compression based data hiding scheme using pixel value adjusting strategy. Multidimens Syst Signal Process 29(4):1801–1818

    Article  Google Scholar 

  28. Memon N, Wong PW (2001) A buyer-seller watermarking protocol. IEEE Trans Image Process 10(4):643–649

    Article  Google Scholar 

  29. Nasrabadi NM, King RA (1988) Image coding using vector quantization: a review. IEEE Trans Commun 36(8):957–971

    Article  Google Scholar 

  30. Qin C, Chang C-C, Huang Y-H, Liao L-T (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23(7):1109–1118

    Article  Google Scholar 

  31. Sun W, Lu Z-M, Wen Y-C, Yu F-X, Shen R-J (2013) High performance reversible data hiding for block truncation coding compressed images. Signal Image Video Process 7(2):297–306

    Article  Google Scholar 

  32. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8):890–896

    Article  Google Scholar 

  33. Tsai P, Hu Y-C, Yeh H-L (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  Google Scholar 

  34. Wallace GK (1992) The JPEG still picture compression standard. IEEE Trans Consum Electron 38(1):xviii–xxxiv

    Article  Google Scholar 

  35. Wu M, Liu B (2004) Data hiding in binary image for authentication and annotation. IEEE Trans Multimed 6(4):528–538

    Article  Google Scholar 

  36. Xuan G et al (2006) Lossless data hiding using histogram shifting method based on integer wavelets. International Workshop on Digital Watermarking:323–332

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chen Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The corresponding author was incorrect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CC., Wang, X. & Lin, CC. An efficient dual prediction–based reversible data hiding and reduced code method for AMBTC. Multimed Tools Appl 80, 33157–33176 (2021). https://doi.org/10.1007/s11042-021-11048-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11048-y

Keywords

Navigation