Skip to main content
Log in

Combined ripplet and total variation image denoising methods using twin support vector machines

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The main goals of denoising are to improve the signal-to-noise-ratio (SNR) and to preserve the informative features such as edges and textures. Aiming at reducing Gibbs-type artifacts, several researchers have combined wavelet-like transforms such as curvelets with total variation or diffusion methods. In this paper, a ripplet formulation of the total variation method for denoising images is proposed. The ripplet is known as a developed version of the curvelet transform and proposes a new tight frame with sparse representation for images with discontinuities along any type of boundaries. We manipulate the cost function of the total variation method, such that instead of minimizing the total variation of the noisy image, we minimize the total variation of a new image obtained from non-textured regions of ripplet subbands. To obtain these regions, ripplet coefficients are divided into textured regions and smooth ones using the twin support vector machine classifier. Numerical examples demonstrate that the proposed approach improves the image quality in terms of both subjective and objective inspections, compared with some other state-of-the-art denoising techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balster EJ, Zheng YF, Ewing RL (2005) Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans Image Process 14(12):2024–2039

    Article  Google Scholar 

  2. Barash D (2002) Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans Pattern Anal Mach Intell 24(6):844–847

    Article  Google Scholar 

  3. Barbu A (2009) Training an active random field for real-time image denoising. IEEE Trans Image Process 18(11):2451–2462

    Article  MathSciNet  MATH  Google Scholar 

  4. Brox T, Kleinschmidt O, Cremers D (2008) Efficient nonlocal means for denoising of textural patterns. IEEE Trans Image Process 17(7):1083–1092

    Article  MathSciNet  Google Scholar 

  5. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  MathSciNet  MATH  Google Scholar 

  6. Buades A, Coll B, Morel JM (2006) Neighborhood filters and PDE’s. Numer Math 105(1):1–34

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes EJ, Donoho DL (2000) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. Stanford Univ Ca Dept of Statistics, Nashville

    Google Scholar 

  8. Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng H, Tian JW, Liu J, Yu QZ (2004) Wavelet domain image denoising via support vector regression. Electron Lett 40(23):1

    Article  Google Scholar 

  10. Coifman RR, Sowa A (2000) Combining the calculus of variations and wavelets for image enhancement. Appl Comput Harmon Anal 9(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  11. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  12. Dixit AA, Phadke AC (2013). Image de-noising by non-local means algorithm. In: Signal Processing Image Processing & Pattern Recognition (ICSIPR), 2013 International Conference on. IEEE, 275–277

  13. Durand S, Froment J (2003) Reconstruction of wavelet coefficients using total variation minimization. SIAM J Sci Comput 24(5):1754–1767

    Article  MathSciNet  MATH  Google Scholar 

  14. Easley G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25(1):25–46

    Article  MathSciNet  MATH  Google Scholar 

  15. Easley GR, Labate D, Colonna F (2009) Shearlet-based total variation diffusion for denoising. IEEE Trans Image Process 18(2):260–268

    Article  MathSciNet  MATH  Google Scholar 

  16. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  17. Geng P, Huang M, Liu S, Feng J, Bao P (2014) Multifocus image fusion method of Ripplet transform based on cycle spinning. Multimedia Tools Appl 75:1–11

    Google Scholar 

  18. Ghahremani M, Ghassemian H (2015) Remote sensing image fusion using ripplet transform and compressed sensing. IEEE Geosci Remote Sens Lett 12(3):502–506

    Article  Google Scholar 

  19. Gilboa G, Sochen N, Zeevi YY (2003). Texture preserving variational denoising using an adaptive fidelity term. In: Proc VLsM (Vol. 3)

  20. Ji Z, Chen Q, Sun QS, Xia DS (2009) A moment-based nonlocal-means algorithm for image denoising. Inf Process Lett 109(23):1238–1244

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin L, Xiong C, Liu H (2012) Improved bilateral filter for suppressing mixed noise in color images. Digit Signal Proc 22(6):903–912

    Article  MathSciNet  Google Scholar 

  22. Lee JS (1983) Digital image smoothing and the sigma filter. Comput Vis, Graph, Image Proc 24(2):255–269

    Article  Google Scholar 

  23. Ma J, Plonka G (2007) Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans Image Process 16(9):2198–2206

    Article  MathSciNet  Google Scholar 

  24. Mahmoudi M, Sapiro G (2005) Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Proc Lett 12(12):839–842

    Article  Google Scholar 

  25. Parrilli S, Poderico M, Angelino CV, Verdoliva L (2012) A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans Geosci Remote Sens 50(2):606–616

    Article  Google Scholar 

  26. Qiu P, Mukherjee PS (2010) Edge structure preserving image denoising. Signal Process 90(10):2851–2862

    Article  MATH  Google Scholar 

  27. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D: Nonlinear Phenom 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  28. Shahdoosti HR, Khayat O (2016) Image denoising using sparse representation classification and non-subsampled shearlet transform. SIViP 10(6):1081–1087

    Article  MATH  Google Scholar 

  29. Shahdoosti HR, Khayat O (2016) Combination of anisotropic diffusion and non-subsampled shearlet transform for image denoising. J Intell Fuzzy Syst 30(6):3087–3098

    Article  MATH  Google Scholar 

  30. Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing. Int J Comput Vis 23(1):45–78

    Article  Google Scholar 

  31. Steidl G, Weickert J, Brox T, Mrázek P, Welk M (2004) On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J Numer Anal 42(2):686–713

    Article  MathSciNet  MATH  Google Scholar 

  32. Tappen MF, Liu C, Adelson EH, Freeman WT (2007) Learning gaussian conditional random fields for low-level vision. In: 2007 I.E. Conference on Computer Vision and Pattern Recognition. IEEE, pp 1–8

  33. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Computer Vision, 1998. Sixth International Conference on, IEEE, pp 839–846

  34. Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York

    MATH  Google Scholar 

  35. Wang XY, Yang HY, Fu ZK (2010) A new wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine. Expert Syst Appl 37(10):7040–7049

    Article  Google Scholar 

  36. Wang XY, Yang HY, Zhang Y, Fu ZK (2013) Image denoising using SVM classification in nonsubsampled contourlet transform domain. Inf Sci 246:155–176

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu J, Yang L, Wu D (2010) Ripplet: a new transform for image processing. J Vis Commun Image Represent 21(7):627–639

    Article  Google Scholar 

  38. Yang HY, Wang XY, Niu PP, Liu YC (2014) Image denoising using nonsubsampled shearlet transform and twin support vector machines. Neural Netw 57:152–165

    Article  Google Scholar 

  39. Yaroslavsky, L., 2012. Digital picture processing: an introduction, (Vol. 9). Springer Science & Business Media, berlin

  40. Zhang M, Gunturk BK (2008) Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process 17(12):2324–2333

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Jun Xu for kindly sharing the ripplet code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shahdoosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahdoosti, H.R., Hazavei, S.M. Combined ripplet and total variation image denoising methods using twin support vector machines. Multimed Tools Appl 77, 7013–7031 (2018). https://doi.org/10.1007/s11042-017-4618-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4618-9

Keywords

Navigation