Skip to main content

Advertisement

Log in

The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Over the last decade, mesenchymal stem cells (MSCs) have been considered a suitable source for cell-based therapy, especially in regenerative medicine. First, the efficacy and functions of MSCs in clinical applications have been attributed to their differentiation ability, called homing and differentiation. However, it has recently been confirmed that MSCs mostly exert their therapeutic effects through soluble paracrine bioactive factors and extracellular vesicles, especially secretome. These secreted components play critical roles in modulating immune responses, improving the survival, and increasing the regeneration of damaged tissues. The secretome content of MSCs is variable under different conditions. Oxidative stress (OS) is one of these conditions that is highly important in MSC therapy and regenerative medicine. High levels of reactive oxygen species (ROS) are produced during isolation, cell culture, and transplantation lead to OS, which induces cell death and apoptosis and limits the efficacy of their regeneration capability. In turn, the preconditioning of MSCs in OS conditions contributes to the secretion of several proteins, cytokines, growth factors, and exosomes, which can improve the antioxidant potential of MSCs against OS. This potential of MSC secretome has turned it into a new promising cell-free tissue regeneration strategy.

This review provides a view of MSC secretome under OS conditions, focusing on different secretome contents of MSCs and thier possible therapeutic potential against cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Input data for the analyses are available from the corresponding authors on request.

Abbreviations

MSCs:

Mesenchymal stem cells

OS:

Oxidative stress

ROS:

Reactive oxygen species

IGF:

Insulin-like growth factor

PEDF:

Pigment epithelium-derived factor

VEGF:

Vascular endothelial growth factor

IGF-1:

Insulin-like growth factor-1

BMP-2:

Bone morphogenic protein-2

BMP-4:

Bone morphogenic protein-4

M-CSF:

Monocyte colony stimulating factor

RANKL:

Receptor activator of nuclear factor kappa-B ligand

G-CSF:

Granulocyte colony stimulating factor

SDF-1:

Stromal-cell-derived factor 1

LIF:

Leukemia inhibitory factor

VE-cadherin:

Vein endothelial cadherin

CNS:

Central nervous system

NGF:

Nerve growth factor

BDNF:

Brain derived neurotrophic factor

GDNF:

Glial derived neurotrophic factor

NT-3:

Neurotrophin-3

FGF-2:

Fibroblast growth factor-2

EPO:

Erythropoietin

CNTF:

Ciliary neurotrophic factor

PNS:

Peripheral nervous system

bFGF:

Basic fibroblast growth factor

SDF-1α:

Stromal cell-derived factor 1 α

MCP-1:

Monocyte chemotactic protein-1

STC-1:

Stanniocalcin-1

MHC-I:

Major histocompatibility complex I

PGE2:

Prostaglandin E2

TGF-β:

Transforming growth factor beta

IDO:

Indoleamine-pyrrole 2,3-dioxygenase

GVHD:

Graft versus host disease

Nrf2:

Erythroid 2-related factor

HIF:

Hypoxia-inducible factor

CAT:

Catalase

SOD:

Superoxide dismutase

GSH:

Glutathione

GPx:

Glutathione peroxidase

TrxR:

Thioredoxin reductase

AD-MSC:

Adipose tissue-derived MSCs

Ang-1:

Aangiogenin-1

HGF:

Hepatocyte growth factor

PDGF:

Platelet-derived growth factor

iPSCs:

Induced pluripotent stem cells

DPSCs:

Include dental pulp stem cells

CDPSCs:

Dental pulp's inferior duct' stem cells

EVs:

extracellular vesicles

MVs:

Micro vesicles

ILVs:

Intraluminal vesicles

MVBs:

Multi-vesicular bodies

PRDX1:

Peroxiredoxin 1

TXN1:

Thioredoxin 1

ApoD:

Apolipoprotein D

RPE:

Retinal pigment cells

References

  1. Ramalho-Santos M, Willenbring H (2007) On the origin of the term “stem cell.” Cell Stem Cell 1(1):35–38

    Article  CAS  PubMed  Google Scholar 

  2. Shotorbani BB et al (2017) Adhesion of mesenchymal stem cells to biomimetic polymers: a review. Mater Sci Eng C Mater Biol Appl 71:1192–1200

    Article  CAS  PubMed  Google Scholar 

  3. Choi K-M et al (2008) Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 105(6):586–594

    Article  CAS  PubMed  Google Scholar 

  4. Moore KA, Lemischka IRJS (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  CAS  PubMed  Google Scholar 

  5. Denu RA, Hematti P (2016) Effects of oxidative stress on mesenchymal stem cell biology. Oxidat Med Cell Long. 2016.

  6. Denu RA, Hematti PJOM (2016) Effects of oxidative stress on mesenchymal stem cell biology. Oxidat Med Cell Long. https://doi.org/10.1155/2016/2989076

    Article  Google Scholar 

  7. Chang W et al (2013) Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol 28(12):1529–1536

    CAS  PubMed  Google Scholar 

  8. Rahman Z, Soory M (2006) Antioxidant effects of glutathione and IGF in a hyperglycaemic cell culture model of fibroblasts: some actions of advanced glycaemic end products (AGE) and nicotine. Endocr Metab Immune Disord Drug Targets. 6(3):279–286

    Article  CAS  PubMed  Google Scholar 

  9. Shibuki H et al (2002) Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia–reperfusion injury. Invest Ophthalmol Vis Sci 43(2):528–536

    PubMed  Google Scholar 

  10. Tsao Y-P et al (2006) Pigment epithelium-derived factor inhibits oxidative stress-induced cell death by activation of extracellular signal-regulated kinases in cultured retinal pigment epithelial cells. Life Sci 79(6):545–550

    Article  CAS  PubMed  Google Scholar 

  11. Shaban S et al. (2017) Effects of antioxidant supplements on the survival and differentiation of stem cells. Oxidat Med Cell Long 2017

  12. Russell A, Lefavor R, Zubair A (2017) Effect of hypoxia and xeno-free medium formulations on the mesenchymal stem cell secretome. Cytotherapy 19(5):S192–S193

    Article  Google Scholar 

  13. Daneshmandi L et al (2020) Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol 38(12):1373–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82:1–11

    Article  PubMed  CAS  Google Scholar 

  15. Salgado JA et al (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5(2):103–110

    Article  CAS  PubMed  Google Scholar 

  16. Sadat S et al (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363(3):674–679

    Article  CAS  PubMed  Google Scholar 

  17. Lee K et al (2011) Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J Cell Mol Med 15(10):2082–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallina CV, Turinetto V, Giachino C (2015) A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int 2015

  19. Erba P, Terenghi G, Kingham PJ (2010) Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Curr Stem Cell Res Ther 5(2):153–160

    Article  CAS  PubMed  Google Scholar 

  20. Caseiro AR et al (2016) Neuromuscular regeneration: perspective on the application of mesenchymal stem cells and their secretion products. Stem Cells Int 2016

  21. Salgado AJ et al (2015) Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 9:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Salgado AJ et al (2009) Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells Dev 19(7):1067–1074

    Article  CAS  Google Scholar 

  23. Wei X et al (2009) IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27(2):478–488

    Article  CAS  PubMed  Google Scholar 

  24. Freedman SB, Isner JM (2001) Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol 33(3):379–393

    Article  CAS  PubMed  Google Scholar 

  25. Burlacu A et al (2012) Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev 22(4):643–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kinnaird T et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    Article  CAS  PubMed  Google Scholar 

  27. Nakagami H et al (2005) Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue–derived stromal cells. Arterioscler Thromb Vasc Biol 25(12):2542–2547

    Article  CAS  PubMed  Google Scholar 

  28. Tang YL et al (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–237

    Article  PubMed  Google Scholar 

  29. Vizoso F et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852

    Article  PubMed Central  CAS  Google Scholar 

  30. Block GJ et al (2009) Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem cells 27(3):670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fierabracci A et al (2016) The use of mesenchymal stem cells for the treatment of autoimmunity: from animals models to human disease. Curr Drug Targets 17(2):229–238

    Article  CAS  PubMed  Google Scholar 

  32. Ryan JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2(1):8

    Article  CAS  Google Scholar 

  33. Cui L et al (2007) Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 13(6):1185–1195

    Article  CAS  PubMed  Google Scholar 

  34. Du Y-M et al (2018) Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 363(1):114–120

    Article  CAS  PubMed  Google Scholar 

  35. Guo H et al (2018) Mesenchymal stem cells overexpressing IL-35: a novel immunosuppressive strategy and therapeutic target for inducing transplant tolerance. Stem Cell Res Ther 9(1):254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi D et al (2011) Human adipose tissue− derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1− mediated inhibition of NF-κB signaling. Exp Hematol 39(2):214–224

    Article  CAS  PubMed  Google Scholar 

  37. Zagoura DS et al (2012) Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61(6):894–906

    Article  CAS  PubMed  Google Scholar 

  38. Bermudez MA et al (2016) Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp Eye Res 149:84–92

    Article  CAS  PubMed  Google Scholar 

  39. Kapur SK, Katz AJ (2013) Review of the adipose derived stem cell secretome. Biochimie 95(12):2222–2228

    Article  CAS  PubMed  Google Scholar 

  40. Panahi M et al (2020) Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol

  41. Sart S, Song L, Li Y (2015) Controlling redox status for stem cell survival, expansion, and differentiation. Oxidat Med Cell Long

  42. Ji A-R et al (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42(3):175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rahimi G et al (2021) A combination of herbal compound (SPTC) along with exercise or metformin more efficiently alleviated diabetic complications through down-regulation of stress oxidative pathway upon activating Nrf2-Keap1 axis in AGE rich diet-induced type 2 diabetic mice. Nutr Metab 18(1):1–14

    CAS  Google Scholar 

  45. Chacko SM et al (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299(6):C1562–C1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75(2):199–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dayem AA et al (2010) Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers 2(2):859–884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chaudhari P, Ye Z, Jang Y-Y (2014) Roles of reactive oxygen species in the fate of stem cells. Antioxid Redox Signal 20(12):1881–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Repolês BM, Machado CR, Florentino PT (2020) DNA lesions and repair in trypanosomatids infection. Genet Mol Biol 43(1).

  50. Cieślar-Pobuda A et al (2017) ROS and oxidative stress in stem cells. Oxidat Med Cell Long 2017

  51. Bigarella CL, Liang R, Ghaffari S (2014) Stem cells and the impact of ROS signaling. Development 141(22):4206–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cieślar-Pobuda A et al (2015) The expression pattern of PFKFB3 enzyme distinguishes between induced-pluripotent stem cells and cancer stem cells. Oncotarget 6(30):29753–29770

    Article  PubMed  PubMed Central  Google Scholar 

  53. Armstrong L et al (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28(4):661–673

    Article  CAS  PubMed  Google Scholar 

  54. Ebert R et al (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in mesenchymal stem cells in vitro. Stem Cells. https://doi.org/10.1634/stemcells.2005-0117

    Article  PubMed  Google Scholar 

  55. Kim W-S, Park B-S, Sung J-H (2009) The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9(7):879–887

    Article  CAS  PubMed  Google Scholar 

  56. Ranganath SH et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma D et al (2014) Proteomic analysis of mesenchymal stem cells from normal and deep carious dental pulp. PLoS One 9(5):e97026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sun L-Y et al (2013) Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J Biomed Sci 20(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kim W-S et al (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49(2):133–142

    Article  CAS  PubMed  Google Scholar 

  60. Jiang J et al (2015) High-throughput screening of cellular redox sensors using modern redox proteomics approaches. Expert Rev Proteom 12(5):543–555

    Article  CAS  Google Scholar 

  61. Shafi S et al (2019) Impact of natural antioxidants on the regenerative potential of vascular cells. Front Cardiovas Med 6:28

    Article  CAS  Google Scholar 

  62. Yang W et al (2016) Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med 37(4):1075–1082

    Article  CAS  PubMed  Google Scholar 

  63. Xia J et al (2019) Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 13(4):299–307

    Article  CAS  PubMed  Google Scholar 

  64. Skalnikova H et al (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11(4):691–708

    Article  CAS  PubMed  Google Scholar 

  65. Zimmerlin L et al (2013) Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 95(12):2235–2245

    Article  CAS  PubMed  Google Scholar 

  66. Cunningham CJ, Redondo-Castro E, Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 38(8):1276–1292

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kachgal S, Putnam AJ (2011) Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14(1):47–59

    Article  CAS  PubMed  Google Scholar 

  68. Arzaghi H et al (2021) Nanomaterials modulating stem cells behavior towards cardiovascular cell linage. Mater Adv. https://doi.org/10.1039/D0MA00957A

    Article  Google Scholar 

  69. Lee RH et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14(4–6):311–324

    Article  CAS  PubMed  Google Scholar 

  70. Wei X et al (2009) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462(1):76–79

    Article  CAS  PubMed  Google Scholar 

  71. Makridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer biomarkers. J Proteomics 73(12):2291–2305

    Article  CAS  PubMed  Google Scholar 

  72. Osugi M et al (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18(13–14):1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar P et al (2019) The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 46:1–9

    Article  CAS  Google Scholar 

  74. Jafari D et al (2020) Designer exosomes: a new platform for biotechnology therapeutics. BioDrugs. https://doi.org/10.1007/s40259-020-00434-x

    Article  PubMed  PubMed Central  Google Scholar 

  75. Margolis L, Sadovsky Y (2019) The biology of extracellular vesicles: The known unknowns. PLoS Biol 17(7):e3000363–e3000363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y et al (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19–19

    Article  PubMed  PubMed Central  Google Scholar 

  77. Record M et al (2018) Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res 59(8):1316–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jafari, D., et al., Improvement, scaling-up, and downstream analysis of exosome production. 2020. 40(8): p. 1098–1112.

  79. Tricarico C, Clancy J, D’Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8(4):220–232

    Article  CAS  PubMed  Google Scholar 

  80. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727

    Article  CAS  PubMed Central  Google Scholar 

  81. D’Anca M et al (2019) Exosome determinants of physiological aging and age-related neurodegenerative diseases. Front Ag Neurosci 11:232–232

    Article  CAS  Google Scholar 

  82. Zabeo D et al (2017) Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles 6(1):1329476–1329476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Jafari D et al (2019) The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie 165:76–89

    Article  CAS  PubMed  Google Scholar 

  84. Garcia NA et al (2015) Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One 10(9):e0138849–e0138849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Eldh M et al (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5(12):e15353–e15353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Saeed-Zidane M et al (2017) Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress. PLoS One 12(11):e0187569–e0187569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pascua-Maestro R et al (2019) Extracellular vesicles secreted by astroglial cells transport apolipoprotein D to neurons and mediate neuronal survival upon oxidative stress. Front Cell Neurosci. https://doi.org/10.3389/fncel.2018.00526

    Article  PubMed  PubMed Central  Google Scholar 

  88. Atienzar-Aroca S et al (2016) Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J Cell Mol Med 20(8):1457–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burger D et al (2012) Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells: implications in vascular senescence. J Am Heart Assoc 1(3):e001842–e001842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Huber V et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128(7):1796–1804

    Article  CAS  PubMed  Google Scholar 

  91. Kong H, Chandel NS (2018) Regulation of redox balance in cancer and T cells. J Biol Chem 293(20):7499–7507

    Article  CAS  PubMed  Google Scholar 

  92. Rehman J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  93. da Silva Meirelles L et al (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5):419–427

    Article  CAS  Google Scholar 

  94. Hung SC et al (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370

    Article  CAS  PubMed  Google Scholar 

  95. Chiellini C et al (2008) Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol 9(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tasso R et al (2012) The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model. Biomaterials 33(7):2086–2096

    Article  CAS  PubMed  Google Scholar 

  97. Prichard HL, Reichert W, Klitzman B (2008) IFATS collection: adipose-derived stromal cells improve the foreign body response. Stem Cells 26(10):2691–2695

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from Tabriz University of Medical Sciences, Deputy for Research and Technology, grant number: (63680)- IR. TBZMED. REC. 1399. 036.

Author information

Authors and Affiliations

Authors

Contributions

BR and MP contributed equally and shared the first co-authorship. They wrote all sections of the manuscript. DJ wrote some sections of the original draft and revised the manuscript critically for important intellectual content. MB worked on the literature research and original draft preparation. EA contributed to the conceptualization, literature research, writing the discussion and conclusion, and editing, reviewing, and organizing the final draft.

Corresponding authors

Correspondence to Davod Jafari or Effat Alizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, B., Panahi, M., Saraygord-Afshari, N. et al. The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine. Mol Biol Rep 48, 5607–5619 (2021). https://doi.org/10.1007/s11033-021-06360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06360-7

Keywords

Navigation