Skip to main content
Log in

Identification of differentially expressed genes in potato associated with tuber dormancy release

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Potato (Solanum tuberosum L.) tuber dormancy and sprouting is very important to potato cultivation and processing. In the present experiment, suppression subtractive hybridization was employed to identify differentially expressed genes in potato associated with tuber dormancy release. 576 random clones were selected from subtractive library and successfully sequenced. A total of 304 effective expressed sequence tags (ESTs) were obtained ultimately. The ESTs have been deposited in the EMBL\GenBank\DDBJ nucleotide sequence data libraries under accession numbers from JK483901 to JK484204. GO annotation showed that 45, 34 and 3 % ESTs were associated with binding, catalytic activity and signaling respectively, some of which were confirmed to be involved in plant dormancy breaking, however, 14 % of the ESTs did not show significant homology to any database proteins. A real-time quantitative PCR (RT-qPCR) analysis of the expression patterns of 14 selectable transcripts showed that 13 selected candidate genes were significantly up-regulated in the development process of tuber from dormancy to sprouting. A full length cDNA of ADP-ribosylation factor (ARF) gene was cloned and found it belonged to potato ARF1 gene. Tissue specific expression analysis showed ARF1 expression level was the highest in tuber. RT-qPCR analysis of the expression profile of ARF1 gene from potato tuber dormancy to sprouting revealed that the ARF1 gene expression was significantly increased after tuber dormancy breaking, which suggested that it probably associated with tuber dormancy and sprouting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARFs:

ADP-ribosylation factors

ESTs:

Expressed sequence tags

IPTG:

Isopropyl β-d-thiogalactopyranoside

RT-qPCR:

Real-time quantitative-polymerase chain reaction

SSH:

Suppression subtractive hybridization

References

  1. Burton WG (1989) The potato, 3rd edn. Longman Scientific & Technical, Essex, pp 470–504

    Google Scholar 

  2. Reust W (1986) EAPR working group “physiological age of the potato”. Potato Res 29:268–271

    Article  Google Scholar 

  3. Van Ittersum MK, Aben FCB, Keijzer CJ (1992) Morphological changes in tuber buds during dormancy and initial sprout growth of seed potatoes. Potato Res 35:249–260

    Article  Google Scholar 

  4. Claassens MMJ, Vreugdenhil D (2000) Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Res 43:347–369

    Article  CAS  Google Scholar 

  5. Bajji M, M’Hamdi M, Gastiny F, Rojas-Beltran J, du Jardin P (2007) Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers. Biotechnol Agron Soc Environ 11:121–131

    CAS  Google Scholar 

  6. Kotch GP, Ortiz R, Peloquin SJ (1992) Genetic analysis by use of potato haploid populations. Genome 35:103–108

    Article  Google Scholar 

  7. Viola R, Pelloux J, van der Ploeg A, Gillespie T, Marquis N, Roberts AG, Hancock RD (2007) Symplastic connection is required for bud outgrowth following dormancy in potato (Solanum tuberosum L.) tubers. Plant Cell Environ 30:973–983

    Article  PubMed  CAS  Google Scholar 

  8. Ronning CM, Stegalkina SS, Ascenzi RA, Bougri O, Hart AL, Utterbach TR, Vanaken SE, Riedmuller SB, White JA, Cho J, Pertea GM, Lee Y, Karamycheva S, Sultana R, Tsai J, Quackenbush J, Griffiths HM, Restrepo S, Smart CD, Fry WE, van der Hoeven R, Tanksley S, Zhang P, Jin H, Yamamoto ML, Baker BJ, Buell CR (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol 131:419–429

    Article  PubMed  Google Scholar 

  9. Campbell M, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8:317–328

    Article  PubMed  CAS  Google Scholar 

  10. Sorce C, Lorenzi R, Parisi B, Ranalli P (2005) Physiological mechanisms involved in potato (Solanum tuberosum L.) tuber dormancy and the control of sprouting by chemical suppressants. Acta Hortic (ISHS) 684:177–186

    CAS  Google Scholar 

  11. Coffin RH, Yada RY, Parkin KL, Grodzinski B, Stanley DW (1987) Effect of low temperature storage on sugar concentrations and chip color of certain processing potato cultivars and selections. J Food Sci 52:639–645

    Article  Google Scholar 

  12. Teper-Bamnolker P, Dudai N, Fischer R, Belausov E, Zemach H, Shoseyov O, Eshel D (2010) Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem. Planta 232:179–186

    Article  PubMed  CAS  Google Scholar 

  13. Coleman WK, Hawkins G, Melnerney J, Goddard M (1992) Development of a dormancy release technology: a review. Am Potato J 69:437–445

    Article  CAS  Google Scholar 

  14. Wiltshire JJJ, Cobb AH (1996) A review of the physiology of potato tuber dormancy. Ann Appl Biol 129:553–569

    Article  Google Scholar 

  15. Suttle JC (2004) Physiological regulation of potato tuber dormancy. Am J Potato Res 81:253–262

    Article  CAS  Google Scholar 

  16. Carrera E, Bou J, Garcia-Martinez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256

    Article  PubMed  CAS  Google Scholar 

  17. Suttle JC (2004) Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. J Plant Physiol 161:157–164

    Article  PubMed  CAS  Google Scholar 

  18. Suttle JC (2008) Effects of synthetic phenylurea and nitroguanidine cytokinins on dormancy break and sprout growth in Russet Burbank minitubers. Am J Potato Res 85:121–128

    Article  CAS  Google Scholar 

  19. Suttle JC, Banowetz GM (2000) Changes in cis-zeatin and cis-zeatin riboside levels and biological activity during potato tuber dormancy. Physiol Plant 109:68–74

    Article  CAS  Google Scholar 

  20. Suttle JC (2001) Dormancy-related changes in cytokinin efficacy and metabolism in potato tubers during postharvest storage. Plant Growth Regul 35:199–206

    Article  CAS  Google Scholar 

  21. Biemelt S, Hajirezaei M, Hentschel E, Sonnewald U (2000) Comparative analysis of abscisic acid content and starch degradation during storage of tubers harvested from different potato varieties. Potato Res 43:371–382

    Article  CAS  Google Scholar 

  22. Sorce C, Lombardi L, Giorgetti L, Parisic B, Ranalli P, Lorenzia R (2009) Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum L.) cultivars. J Plant Physiol 166:1023–1033

    Article  PubMed  CAS  Google Scholar 

  23. Farré EM, Bachmann A, Willmitzer L, Trethewey RN (2001) Acceleration of potato tuber sprouting by the expression of a bacterial pyrophosphatase. Nat Biotechnol 19:268–272

    Article  PubMed  Google Scholar 

  24. Lytovchenko A, Schauer N, Willmitzer L, Fernie AR (2005) Tuber-specific cytosolic expression of a bacterial phosphoglucomutase in potato (Solanum tuberosum L.) dramatically alters carbon partitioning. Plant Cell Physiol 46:588–597

    Article  PubMed  CAS  Google Scholar 

  25. Faivre-Rampant O, Bryan GJ, Roberts AG, Milbourne D, Viola R, Taylor MA (2004) Regulated expression of a novel TCP domain transcription factor indicates an involvement in the control of meristem activation processes in Solanum tuberosum. J Exp Bot 55:951–953

    Article  PubMed  CAS  Google Scholar 

  26. Li CH, Chen J, Shi YH, Lu XJ (2011) Use of suppressive subtractive hybridization to identify differentially expressed genes in ayu (Plecoglossus altivelis) associated with Listonella anguillarum infection. Fish Shellfish Immunol 31:500–506

    Article  PubMed  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  28. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  29. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  30. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  31. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 421:2907–2914

    Article  Google Scholar 

  32. Li Y, Kelly WG, Logsdon JM Jr, Schurko AM, Harfe BD, Hill-Harfe KL, Kahn RA (2004) Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among divers eukaryotes and function in C. elegans. FASEB J 18:1834–1850

    Article  PubMed  CAS  Google Scholar 

  33. de la Vega E, Degnan BM, Hall MR, Wilson KJ (2007) Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors. Fish Shellfish Immunol 23:1072–1088

    Article  PubMed  Google Scholar 

  34. Simko I, McMurry S, Yang HM, Manschot A, Davies PJ, Ewing EE (1997) Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol 115:1453–1459

    Google Scholar 

  35. Destefano-Beltran L, Knauber D, Huckle L, Suttle JC (2006) Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol 61:687–697

    Article  PubMed  CAS  Google Scholar 

  36. Fernie AR, Willmitzer L (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol 127:1459–1465

    Article  PubMed  CAS  Google Scholar 

  37. Suttle JC (1998) Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118:843–848

    Article  PubMed  CAS  Google Scholar 

  38. Suttle JC, Hultstrand JF (1994) Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol 105:891–896

    PubMed  CAS  Google Scholar 

  39. Sorce C, Lorenzi R, Ceccarelli N, Ranalli P (2000) Changes in free and conjugated IAA during dormancy and sprouting of potato tubers. Aust J Plant Physiol 27:371–377

    Article  CAS  Google Scholar 

  40. Hemberg T (1985) Potato rest. In: Li PH (ed) Potato physiology. Academic Press, Orlando, pp 353–388

    Google Scholar 

  41. Coleman W (1987) Dormancy release in potato tubers: a review. Am J Potato Res 64:57–68

    Article  Google Scholar 

  42. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  43. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  44. Faivre-Rampant O, Cardle L, Marshall D, Viola R, Taylor MA (2004) Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J Exp Bot 55:613–622

    Article  PubMed  CAS  Google Scholar 

  45. Hendricks SB, Taylorson RB (1975) Breaking of seed dormancy by catalase inhibition. Proc Natl Acad Sci 72:306–309

    Article  PubMed  CAS  Google Scholar 

  46. Fontaine O, Huault C, Pavis N, Billard JP (1994) Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol Biochem 32:677–683

    CAS  Google Scholar 

  47. Wang SY, Jiao HJ, Faust M (1991) Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiol Plant 82:231–236

    Article  CAS  Google Scholar 

  48. Or E, Vilozny I, Fennell A, Eyal Y, Ogrodovitch A (2002) Dormancy in grape buds: isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci 162:121–130

    Article  CAS  Google Scholar 

  49. Pérez FJ, Lira W (2005) Possible role of catalase in post-dormancy bud break in grapevines. J Plant Physiol 162:301–308

    Article  PubMed  Google Scholar 

  50. Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 275–315

    Google Scholar 

  51. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  52. Wilczynski G, Kulma A, Sikorski AF, Szopa J (1997) ADP-ribosylation factor (ARF) regulates cAMP synthesis in potato. J Plant Physiol 151:689–698

    Article  CAS  Google Scholar 

  53. Magdalena Z, Anna P, Jan KPS, Jan S (2003) ADP-ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tubers. J Agric Food Chem 51:288–294

    Article  Google Scholar 

  54. Chen RJ, Masson PH (2005) Auxin transport and recycling of PlN proteins in plants. Plant Cell Monogr 10:139–157

    Article  Google Scholar 

  55. Naramoto S, Kleine-Vehna J, Roberta S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Akihiko N, Van Montagu Marc CE, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci 107:21890–21895

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30871573, 31160298). We would like to thank Zhendong Tian (College of Horticulture and Forestry, Huazhong Agricultural University, China) for valuable discussion in the experiment technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaijun Si.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Zhang, N., Wen, Y. et al. Identification of differentially expressed genes in potato associated with tuber dormancy release. Mol Biol Rep 39, 11277–11287 (2012). https://doi.org/10.1007/s11033-012-2037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2037-6

Keywords

Navigation