Skip to main content

Advertisement

Log in

Development of microsatellite markers to genetically differentiate populations of Octopus minor from Korea and China

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Of the more than 300 octopus species, Octopus minor is one of the most popular and economically important species in Eastern Asia, including Korea, along with O. vulgaris, O. ocellatus, and O. aegina. We developed 19 microsatellite markers from Octopus minor and eight polymorphic markers were developed to analyze the genetic diversity and relationships among four octopus populations from Korea and three from China. The number of alleles per locus varied from 10 to 49, and allelic richness per locus ranged from 2 to 16.4 across all populations. The average allele number among the populations was 11.1, with a minimum of 8.3 and a maximum of 13.6. The mean allelic richness was 8.7 in all populations. The Hardy–Weinberg equilibrium (HWE) test revealed significant deviation in 19 of the 56 single-locus sites, and null alleles were presumed in five of eight loci. The pairwise F ST values between populations from Korea and China differed significantly in all pairwise comparisons. The genetic distances between the China and Korea samples ranged from 0.161 to 0.454. The genetic distances among the populations from Korea ranged from 0.033 to 0.090, with an average of 0.062; those among populations from China ranged from 0.191 to 0.316, with an average of 0.254. The populations from Korea and China formed clearly separated into clusters via an unweighted pair group method with arithmetic mean dendrogram. Furthermore, a population from muddy flats on the western coast of the Korean Peninsula and one from a rocky area on Jeju Island formed clearly separated subclusters. An assignment test based on the allele distribution discriminated between the Korean and Chinese origins with 96.9 % accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Norman MD, Hochberg FG (2005) The current state of Octopus taxonomy. Phuket Mar Biol Cent Res Bull 66:127–154

    Google Scholar 

  2. Roper CFE, Sweeney MJ, Nauen CE (1984) Cephalopods of the World: an annotated and illustrated catalogue of species of interest to fisheries. FAO Fish Synop 3(125):277

    Google Scholar 

  3. Kim DH, An HC, Lee KH, Hwang JW (2008) Optimal economic fishing efforts in Korean common octopus Octopus minor trap fishery. Fish Sci 74(6):1215–1221

    Article  CAS  Google Scholar 

  4. Norman MD, Sweeney MJ (1997) The shallow-water octopuses (Cephalopoda: Octopodidae) of the Philippines. Invertebr Taxon 11(1):89–140

    Article  Google Scholar 

  5. Thorpe JP, Solé-Cava AM, Watts PC (2000) Exploited marine invertebrates: genetics and fisheries. Hydrobiologia 420(1):165–184

    Article  Google Scholar 

  6. Cheng R, Zheng X, Lin X, Yang J, Li Q (2011) Determination of the complete mitochondrial DNA sequence of Octopus minor. Mol Biol Rep. doi:10.1007/s11033-011-1118-2

  7. Strugnell JM, Allcock AL, Watts PC (2009) A panel of microsatellite loci from two species of octopus, Pareledone turqueti (Joubin, 1905) and Pareledone charcoti (Joubin, 1905). Mol Ecol Resour 9(4):1239–1242

    Article  PubMed  CAS  Google Scholar 

  8. Greatorex EC, Jones CS, Murphy J, Key LN, Emery AM, Boyle PR (2000) Microsatellite markers for investigating population structure in Octopus vulgaris (Mollusca: Cephalopoda). Mol Ecol 9(5):641–642

    Article  PubMed  CAS  Google Scholar 

  9. Zuo Z, Zheng X, Yuan Y, Li Q (2011) Development and characterization of 12 polymorphicmicrosatellite loci in Octopus minor (Sasaki, 1920). Conserv Genet Resour 3:489–491

    Article  Google Scholar 

  10. Kang JH, Yu KH, Kim SK, Park JY, Kim BS, An CM (2010) Species identification and genetic structure of Octopus minor from Korea and China on the basis of partial sequences of mitochondrial cytochrome oxidase I. Korean J Malacol 26(4):285–290

    Google Scholar 

  11. Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27(3):500–507

    PubMed  CAS  Google Scholar 

  12. Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

    Google Scholar 

  13. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural population. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  14. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  15. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  16. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (Version 2.9.3). http://www.unil.ch/izea/software/fstat.html

  17. Weir BD, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  18. Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  20. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  21. Sekino M, Hara M, Taniguchi N (2002) Loss of microsatellite and mitochondrial DNA variation in hatchery trains of Japanese flounder Paralichthys olivaceus. Aquaculture 213:101–112

    Article  CAS  Google Scholar 

  22. Kanno M, Suyama Y, Li Q, Kijima A (2006) Microsatellite analysis of Japanese sea cucumber, Stichopus (Apostichopus) japonicus, supports reproductive isolation in color variants. Mar Biotechnol 8(6):672–685

    Article  PubMed  CAS  Google Scholar 

  23. Yu H, Li Q (2007) Genetic variation of wild and hatchery populations of the Pacific oyster Crassostrea gigas assessed by microsatellite markers. J Genet Genomics 34(12):1114–1122

    Article  PubMed  CAS  Google Scholar 

  24. Hess JE, Matala AP, Narum SR (2011) Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Mol Ecol Resour Suppl 1:137–149

    Article  Google Scholar 

  25. Strugnell JM, Allcock AL, Watts PC (2009) Microsatellite loci from the endemic Southern Ocean octopus Adelieledone polymorpha (Robson, 1930). Mol Ecol Resour 9(3):1068–1070

    Article  PubMed  CAS  Google Scholar 

  26. Kang JH, Kim YK, Park JY, An CM, Nam MM, Byun SG, Lee BI, Lee JH, Choi TJ (2011) Microsatellite analysis as a tool for discriminating an interfamily hybrid between olive flounder and starry flounder. Genet Mol Res 10(4):2786–2794

    Article  PubMed  CAS  Google Scholar 

  27. Cabranes C, Fernandez-Rueda P, Martínez JL (2007) Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J Mar Sci 65:12–16

    Article  Google Scholar 

  28. Moreira AA, Tomás ARG, Hilsdorf AWS (2011) Evidence for genetic differentiation of Octopus vulgaris (Mollusca, Cephalopoda) fishery populations from the southern coast of Brazil as revealed by microsatellites. J Exp Mar Biol Ecol 407:34–40

    Article  Google Scholar 

  29. Doubleday ZA, Semmens JM, Smolenski AJ, Shaw PW (2009) Microsatellite DNA markers and morphometrics reveal a complex population structure in a merobenthic octopus species (Octopus maorum) in south-east Australia and New Zealand. Mar Biol 156:1183–1192

    Article  CAS  Google Scholar 

  30. Juárez OE, Rosas C, Arena L (2010) Heterologous microsatellites reveal moderate genetic structure in the Octopus maya population. Fish Res 106:209–213

    Article  Google Scholar 

  31. Perez-Losada M, Guerra A, Carvalho GR, Sanjuan A, Shaw PW (2002) Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity 89:417–424

    Article  PubMed  CAS  Google Scholar 

  32. Shaw P, Pierce J, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8:407–417

    Article  CAS  Google Scholar 

  33. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45

    Article  PubMed  CAS  Google Scholar 

  34. Duran S, Pascual M, Esyoup A, Turon X (2004) Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol Ecol 13:511–522

    Article  PubMed  CAS  Google Scholar 

  35. Addison JA, Hart MW (2005) Spawning, copulation and inbreeding coefficients in marine invertebrates. Biol Lett 1(4):450–453

    Article  PubMed  CAS  Google Scholar 

  36. Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59(3):532–543

    PubMed  CAS  Google Scholar 

  37. Iglesias J, Otero JJ, Moxica C, Fuentes L, Sanchez FJ (2004) The completed life cycle of the octopus (Octopus vulgaris, Cuvier) under culture conditions: paralarval rearing using Artemia and zoeae, and first data on juvenile growth up to 8 months of age. Aquac Int 12:481–487

    Article  Google Scholar 

  38. Pang IC, Kim KH (1998) Seasonal variation of water mass distributions in the eastern yellow sea and the yellow sea warm current. J Korean Soc Oceanogr 3(3):41–52

    Google Scholar 

  39. Li YL, Kong XY, Yu ZN, Kong J, Ma S, Chen LM (2009) Genetic diversity and historical demography of Chinese shrimp Feneropenaeus chinensis in Yellow Sea and Bohai Sea based on mitochondrial DNA analysis. Afr J Biotechnol 8(7):1193–1202

    CAS  Google Scholar 

  40. English LJ, Maguire GB, Ward RD (2000) Genetic variation of wild and hatchery populations of the pacific oyster, Crassostrea gigas (Thunberg) in Australia. Aquaculture 187:283–298

    Article  Google Scholar 

  41. Pan G, Yang J (2010) Analysis of microsatellite DNA markers reveals no genetic differentiation between wild and hatchery populations of Pacific Threadfin in Hawaii. Int J Biol Sci 6(7):827–833

    Article  PubMed  CAS  Google Scholar 

  42. Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmonsalar) populations. Aquaculture 180:247–264

    Article  Google Scholar 

  43. Hara M, Sekino M (2007) Genetic differences between hatchery stocks and natural populations in Pacific Abalone (Haliotis discus) estimated using microsatellite DNA markers. Mar Biotech 9:74–81

    Article  CAS  Google Scholar 

  44. Li Q, Park C, Endo T, Kijima A (2004) Loss of genetic variation at microsatellite loci in hatchery stocks of the Pacific abalone (Haliotis discus). Aquaculture 235:207–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Fisheries Research and Development Institute (NFRDI) in Korea (RP-2012-BT-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ha Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, JH., Kim, YK., Park, JY. et al. Development of microsatellite markers to genetically differentiate populations of Octopus minor from Korea and China. Mol Biol Rep 39, 8277–8286 (2012). https://doi.org/10.1007/s11033-012-1675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1675-z

Keywords

Navigation