Skip to main content
Log in

Structural diversity and differential expression of novel human intersectin 1 isoforms

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein that functions in clathrin-mediated endocytosis, cell signalling and cytoskeleton rearrangements. The ITSN1 gene encodes two main isoforms: a short form (ITSN1-s), which is ubiquitously expressed and consists of two Eps15 homology (EH) domains and five Src homology 3 (SH3) domains, and a long form (ITSN1-l), which is predominantly expressed in the brain and contains three additional domains, a Dbl homology (DH) domain, a Pleckstrin homology (PH) domain and a C2 domain. Using computational analysis of the EST database and 3′ RACE we determined the length of the 3′ untranslated region of ITSN1-l and demonstrated that the polyadenylation site is located 11,559 nt downstream of the stop codon of the ITSN1-l mRNA. Recently, additional splicing events affecting ITSN1 transcripts were reported, but full-length transcriptional isoforms with different combinations of alternatively spliced exons remained unknown. Here we report the identification of fifteen novel transcriptional isoforms of the human ITSN1 gene with full-length coding sequences that are the result of different combinations of the alternatively spliced exons 5, 6/6′, 20, 23, 25, 26, 26a and 35. The isoforms identified differ in domain organization and expression level in different tissues and more likely contribute to the modulation of many complex protein interactions in which ITSN1 participates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 18:1159–1171

    Article  CAS  PubMed  Google Scholar 

  2. Predescu SA, Predescu DN, Knezevic I, Klein IK, Malik AB (2007) Intersectin-1s regulates the mitochondrial apoptotic pathway in endothelial cells. J Biol Chem 282:17166–17178

    Article  CAS  PubMed  Google Scholar 

  3. Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR, O’Bryan JP (2003) Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem 278:47038–47045

    Article  CAS  PubMed  Google Scholar 

  4. Hussain N, Jenna S, Glogauer M, Quinn C, Wasiak S, Guipponi M, Antonarakis S, Kay B, Stossel N, Lamarche-Vane N, McPherson P (2001) Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 3:932–937

    Article  Google Scholar 

  5. Guipponi M, Scott HS, Chen H, Schebesta A, Rossier C, Antonarakis SE (1998) Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics 53:369–376

    Article  CAS  PubMed  Google Scholar 

  6. Koh TW, Verstreken P, Bellen HJ (2004) Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43:193–205

    Article  CAS  PubMed  Google Scholar 

  7. Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43:207–219

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura T, Yamaguchi T, Tokunaga A, Hara A, Hamaguchi T, Kato K, Iwamatsu A, Okano H, Kaibuchi K (2006) Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. Mol Biol Cell 17:1273–1285

    Article  CAS  PubMed  Google Scholar 

  9. Thomas S, Ritter B, Verbich D, Sanson C, Bourbonnière L, McKinney RA, McPherson PS (2009) Intersectin regulates dendritic spine development and somatodendritic endocytosis but not synaptic vesicle recycling in hippocampal neurons. J Biol Chem 284:12410–12419

    Article  CAS  PubMed  Google Scholar 

  10. Das M, Scappini E, Martin NP, Wong KA, Dunn S, Chen YJ, Miller SL, Domin J, O’Bryan JP (2007) Regulation of neuron survival through an intersectin-phosphoinositide 3′-kinase C2beta-AKT pathway. Mol Cell Biol 27:7906–7917

    Article  CAS  PubMed  Google Scholar 

  11. Yamabhai M, Hoffman NG, Hardison NL, McPherson PS, Castagnoli L, Cesareni G, Kay BK (1998) Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem 273:31401–31407

    Article  CAS  PubMed  Google Scholar 

  12. Tong XK, Hussain NK, de Heuvel E, Kurakin A, Abi-Jaoude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, McPherson PS (2000) The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain. EMBO J 19:1263–1271

    Article  CAS  PubMed  Google Scholar 

  13. Martin NP, Mohney RP, Dunn S, Das M, Scappini E, O’Bryan JP (2006) Intersectin regulates epidermal growth factor receptor endocytosis, ubiquitylation, and signaling. Mol Pharmacol 70:1643–1653

    Article  CAS  PubMed  Google Scholar 

  14. Nikolaienko O, Skrypkina I, Tsyba L, Fedyshyn Y, Morderer D, Buchman V, de la Luna S, Drobot L, Rynditch A (2009) Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cell Signal 21:753–759

    Article  CAS  PubMed  Google Scholar 

  15. He G, Wang H, Huang S, Huang C (2007) Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest 117:1078–1087

    Article  CAS  PubMed  Google Scholar 

  16. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto M, Schoch S, Sudhof TC (1999) EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem 274:18446–18454

    Article  CAS  PubMed  Google Scholar 

  18. Tsyba L, Skrypkina I, Rynditch A, Nikolaienko O, Ferenets G, Fortna A, Gardiner K (2004) Alternative splicing of mammalian intersectin 1: domain associations and tissue specificities. Genomics 84:106–113

    Article  CAS  PubMed  Google Scholar 

  19. Pucharcos C, Casas C, Nadal M, Estivill X, de la Luna S (2001) The human intersectin genes and their spliced variants are differentially expressed. Biochim Biophys Acta 1521:1–11

    CAS  PubMed  Google Scholar 

  20. Tsyba L, Gryaznova T, Dergai O, Dergai M, Skrypkina I, Kropyvko S, Boldyryev O, Nikolaienko O, Novokhatska O, Rynditch A (2008) Alternative splicing affecting the SH3A domain controls the binding properties of intersectin 1 in neurons. Biochem Biophys Res Commun 72:929–934

    Article  Google Scholar 

  21. McGlincy NJ, Smith CWJ (2008) Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Cell 33:385–393

    CAS  Google Scholar 

  22. Yu Y, Chu PY, Bowser DN, Keating DJ, Dubach D, Harper I, Tkalcevic J, Finkelstein DI, Pritchard MA (2008) Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Hum Mol Genet 17:3281–3290

    Article  CAS  PubMed  Google Scholar 

  23. Hussain NK, Yamabhai M, Ramjaun AR, Guyi AM, Baranesi D, O’Bryan JP, Der CJ, Kay BK, McPherson PS (1999) Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem 274:15671–15677

    Article  CAS  PubMed  Google Scholar 

  24. Tsyba LO, Skrypkina IY, Nikolaienko OV, Kropyvko SV, Sopko NI, Nikitchina TV, Gordienko Iyu, Rynditch AV (2004) Alternative splicing of intersectin 1 gene: expression of transcriptional isoforms in normal tissues and in the tissues of Down syndrome embryo. Bull Ukr Soc Genet Sel 2:268–273

    Google Scholar 

  25. de Moor CH, Meijer H, Lissenden S (2005) Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin Cell Dev Biol 16:49–58

    Article  PubMed  Google Scholar 

  26. Du TG, Schmid M, Jansen RP (2007) Why cells move messages: the biological functions of mRNA localization. Semin Cell Dev Biol 18:171–177

    Article  CAS  PubMed  Google Scholar 

  27. Chabanon H, Mickleburgh I, Hesketh J (2004) Zipcodes and postage stamps: mRNA localisation signals and their trans-acting binding proteins. Brief Funct Genomic Proteomic 3:240–256

    Article  CAS  PubMed  Google Scholar 

  28. Szymkiewicz I, Shupliakov O, Dikic I (2004) Cargo- and compartment-selective endocytic scaffold proteins. Biochem J 383:1–11

    Article  CAS  PubMed  Google Scholar 

  29. Jenna S, Hussain NK, Danek EI, Triki I, Wasiak S, McPherson PS, Lamarche-Vane N (2002) The activity of GTFase-activating protein CdGAP is regulated by endocytic protein intersectin. J Biol Chem 277:6366–6373

    Article  CAS  PubMed  Google Scholar 

  30. Lewin B (1997) Gene. Oxford University Press, Inc., New York

    Google Scholar 

  31. Pascalea A, Amadioa M, Quattrone A (2008) Defining a neuron: neuronal ELAV proteins. Cell Mol Life Sci 65:128–140

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. O. Boldyryev for the isolation of mouse neurons and Prof. A.-L. Haenni for helpful discussions and comments on the manuscript. This work was supported by an INTAS Grant (No. 05-1000004-7762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmyla Tsyba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropyvko, S., Gerasymchuk, D., Skrypkina, I. et al. Structural diversity and differential expression of novel human intersectin 1 isoforms. Mol Biol Rep 37, 2789–2796 (2010). https://doi.org/10.1007/s11033-009-9824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9824-8

Keywords

Navigation