Skip to main content
Log in

Quantification of the blood mixing in the left ventricle using Finite Time Lyapunov Exponents

  • Advances in Biomechanics: from foundations to applications
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thrombus formation is one of the major complications in myocardial infarction. One of the causes is known to be the regional hemostasis, i.e. the presence of zones where the intraventricular flow is characterised by low stretching of the fluid elements and low mixing. Though Finite Time Lyapunov Exponents (FTLE) have been used both in vivo and in vitro to identify the overall features of cardiovascular flows by means of the Lagrangian Coherent Structures (LCS), they have been introduced in fluid dynamics as descriptors of mixing. Therefore, we investigate the alteration of the intraventricular mixing in an infarcted left ventricle by means of FTLE, looking for the signature of regional hemostasis. The study is carried out on 3D numerical simulations: a ventricle dyskinetic and dilated because of an ischemic pathology is compared to a healthy one and to another with a deviated inlet velocity profile, simulating the presence of a Mechanical Prosthetic Valve in anatomical position. The LCS analysis highlighted the key vortical structures of the flow and their evolution, revealing how they are affected by changes of the ventricle geometry and mobility. Afterwards, the FTLE statistics showed a similar behaviour in the healthy and deviated inlet cases, where hemostasis was not observed, although flow patterns were very different to each other. Conversely, the infarcted ventricle exhibited significantly different values of FTLE statistics, indicating a much lower mixing that is related to the presence of a stagnating region close to the apex. Such differences suggest that FTLE can be considered a potentially useful tool for the characterisation of the mixing properties of the intraventricular flow and, in particular, for the identification of regional hemostasis. Therefore, further investigations are needed to test the sensitivity and specificity of FTLE statistics to the severity of the pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kheradvar A, Pedrizzetti G (2012) Vortex formation in the cardiovascular system. Springer, London

    Book  Google Scholar 

  2. Kilner PJ, Yang GZ, Wilkes AJ et al (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761. doi:10.1038/35008075

    Article  ADS  Google Scholar 

  3. Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95:108101

    Article  ADS  Google Scholar 

  4. Pierrakos O, Vlachos PP (2006) The effect of vortex formation on left ventricular filling and mitral valve efficiency. J Biomech Eng 128:527–539. doi:10.1115/1.2205863

    Article  Google Scholar 

  5. Gharib M, Rambod E, Kheradvar A et al (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci USA 103:6305–6308. doi:10.1073/pnas.0600520103

    Article  ADS  Google Scholar 

  6. Hong G-R, Pedrizzetti G, Tonti G et al (2008) Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiovasc Imaging 1:705–717. doi:10.1016/j.jcmg.2008.06.008

    Article  Google Scholar 

  7. Sengupta PP, Khandheria BK, Korinek J et al (2007) Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J Am Coll Cardiol 49:899–908. doi:10.1016/j.jacc.2006.07.075

    Article  Google Scholar 

  8. Pedrizzetti G, Domenichini F, Tonti G (2010) On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng 38:769–773. doi:10.1007/s10439-010-9928-2

    Article  Google Scholar 

  9. Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids (1994–present) 22:041901. doi:10.1063/1.3371720

    Article  ADS  MATH  Google Scholar 

  10. Bolger AF, Heiberg E, Karlsson M et al (2007) Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9:741–747. doi:10.1080/10976640701544530

    Article  Google Scholar 

  11. Carlhäll CJ, Bolger A (2010) Passing strange flow in the failing ventricle. Circ Heart Fail 3:326–331. doi:10.1161/CIRCHEARTFAILURE.109.911867

    Article  Google Scholar 

  12. Eriksson J, Carlhäll CJ, Dyverfeldt P et al (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12:9. doi:10.1186/1532-429X-12-9

    Article  Google Scholar 

  13. Markl M, Kilner PJ, Ebbers T (2011) Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. doi:10.1186/1532-429X-13-7

    Google Scholar 

  14. Töger J, Carlsson M, Söderlind G et al (2011) Volume tracking: a new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping. BMC Med Imaging 11:10. doi:10.1186/1471-2342-11-10

    Article  Google Scholar 

  15. Beppu S, Izumi S, Miyatake K et al (1988) Abnormal blood pathways in left ventricular cavity in acute myocardial infarction. Experimental observations with special reference to regional wall motion abnormality and hemostasis. Circulation 78:157–164. doi:10.1161/01.CIR.78.1.157

    Article  Google Scholar 

  16. Lu J, Li W, Zhong Y et al (2012) Intuitive visualization and quantification of intraventricular convection in acute ischemic left ventricular failure during early diastole using color Doppler-based echocardiographic vector flow mapping. Int J Cardiovasc Imaging 28:1035–1047. doi:10.1007/s10554-011-9932-0

    Article  Google Scholar 

  17. Cordero CD, Rossini L, Martinez-Legazpi P et al (2015) Prediction of intraventricular thrombosis by quantitative imaging of stasis: a pilot color-Doppler study in patients with acute myocardial infarction. J Am Coll Cardiol. doi:10.1016/S0735-1097(15)61310-9

    Google Scholar 

  18. Haller G (2001) Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys Fluids (1994–present) 13:3365–3385. doi:10.1063/1.1403336

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D 212:271–304. doi:10.1016/j.physd.2005.10.007

    Article  MathSciNet  MATH  Google Scholar 

  20. Shadden SC, Astorino M, Gerbeau J-F (2010) Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos: an Interdisciplinary. J Nonlinear Sci 20:017512. doi:10.1063/1.3272780

    Google Scholar 

  21. Badas MG, Querzoli G (2011) Spatial structures and scaling in the Convective Boundary Layer. Exp Fluids 50:1093–1107. doi:10.1007/s00348-010-1020-z

    Article  Google Scholar 

  22. Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 47:137–162. doi:10.1146/annurev-fluid-010313-141322

    Article  ADS  Google Scholar 

  23. Miron P, Vétel J, Garon A (2014) On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve. Exp Fluids 55:1–15. doi:10.1007/s00348-014-1814-5

    Article  Google Scholar 

  24. Espa S, Badas MG, Fortini S et al (2012) A Lagrangian investigation of the flow inside the left ventricle. Eur J Mech B Fluids 35:9–19. doi:10.1016/j.euromechflu.2012.01.015

    Article  Google Scholar 

  25. Bermejo J, Benito Y, Alhama M et al (2014) Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 306:H718–H729. doi:10.1152/ajpheart.00697.2013

    Article  Google Scholar 

  26. Hendabadi S, Bermejo J, Benito Y et al (2013) Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann Biomed Eng 41:2603–2616. doi:10.1007/s10439-013-0853-z

    Article  Google Scholar 

  27. Charonko JJ, Kumar R, Stewart K et al (2013) Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann Biomed Eng 41:1049–1061. doi:10.1007/s10439-013-0755-0

    Article  Google Scholar 

  28. Töger J, Kanski M, Carlsson M et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40:2652–2662. doi:10.1007/s10439-012-0615-3

    Article  Google Scholar 

  29. Pierrehumbert RT (1991) Large-scale horizontal mixing in planetary atmospheres. Phys Fluids A Fluid Dyn (1989–1993) 3:1250–1260. doi:10.1063/1.858053

    Article  ADS  Google Scholar 

  30. Liu M, Muzzio FJ, Peskin RL (1994) Quantification of mixing in aperiodic chaotic flows. Chaos Solitons Fractals 4:869–893. doi:10.1016/0960-0779(94)90129-5

    Article  ADS  MATH  Google Scholar 

  31. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60. doi:10.1006/jcph.2000.6484

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Domenichini F (2008) On the consistency of the direct forcing method in the fractional step solution of the Navier–Stokes equations. J Comput Phys 227:6372–6384. doi:10.1016/j.jcp.2008.03.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Domenichini F, Pedrizzetti G (2011) Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput Methods Biomech Biomed Eng 14:95–101. doi:10.1080/10255842.2010.485987

    Article  Google Scholar 

  34. Haller G, Yuan G (2000) Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys D 147:352–370. doi:10.1016/S0167-2789(00)00142-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D 149:248–277. doi:10.1016/S0167-2789(00)00199-8

    Article  MathSciNet  MATH  Google Scholar 

  36. du Toit PC, Marsden JE (2010) Horseshoes in hurricanes. J fixed point theory appl 7:351–384. doi:10.1007/s11784-010-0028-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Eberly D, Gardner R, Morse B et al (1994) Ridges for image analysis. J Math Imaging Vis 4:353–373. doi:10.1007/BF01262402

    Article  Google Scholar 

  38. Haller G (2011) A variational theory of hyperbolic Lagrangian coherent structures. Phys D 240:574–598. doi:10.1016/j.physd.2010.11.010

    Article  MathSciNet  MATH  Google Scholar 

  39. Farazmand M, Haller G (2012) Computing Lagrangian coherent structures from their variational theory. Chaos Interdiscip J Nonlinear Sci 22:013128. doi:10.1063/1.3690153

    Article  MathSciNet  MATH  Google Scholar 

  40. Schultz T, Theisel H, Seidel H-P (2010) Crease surfaces: from theory to extraction and application to diffusion tensor MRI. IEEE Trans Vis Comput Gr 16:109–119. doi:10.1109/TVCG.2009.44

    Article  Google Scholar 

  41. Mangual JO, Domenichini F, Pedrizzetti G (2012) Describing the highly three dimensional right ventricle flow. Ann Biomed Eng 40:1790–1801. doi:10.1007/s10439-012-0540-5

    Article  Google Scholar 

  42. Fortini S, Querzoli G, Espa S, Cenedese A (2013) Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp Fluids 54:1–9. doi:10.1007/s00348-013-1609-0

    Article  Google Scholar 

  43. Elbaz MSM, Calkoen EE, Westenberg JJM et al (2014) Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson 16:78. doi:10.1186/s12968-014-0078-9

    Article  Google Scholar 

  44. Beron-Vera FJ, Olascoaga MJ, Goni GJ (2010) Surface ocean mixing inferred from different multisatellite altimetry measurements. J Phys Oceanogr 40:2466–2480. doi:10.1175/2010JPO4458.1

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Italian Ministry of University and Research, Grant No. PRIN-2012HMR7CF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Querzoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badas, M.G., Domenichini, F. & Querzoli, G. Quantification of the blood mixing in the left ventricle using Finite Time Lyapunov Exponents. Meccanica 52, 529–544 (2017). https://doi.org/10.1007/s11012-016-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0364-8

Keywords

Navigation